carbon fiber filled PEEK thermoplastic gear

Proprietary impregnated PEEK distributor gear for improved performance and useful life

Metals have been the first choice of design engineers for almost three centuries. Developments in highly engineered thermoplastics materials are challenging that dominance. The aerospace and automotive industries have led the charge in this dramatic changeover, initially driven by the need to reduce weight to gain fuel efficiency. Advanced thermoplastic and thermoset systems, including fiber reinforced compositions, are now finding their way into almost every industry.
PEEK is a mainstay material for a growing variety of applications in many different industries. Its popularity is due to excellent friction and wear characteristics, extended durability under punishing environmental conditions, including high temperatures, abrasion and aggressive chemical environments.

Unfilled PEEK resins emit extremely low levels of smoke and toxic gas when exposed to a flame. Glass and carbon reinforced PEEK resins offer high thermal stability and are among the strongest thermoplastics in the market.
PEEK has a long list of outstanding characteristics making it one of the most popular alternatives to metal:

• High mechanical strength and dimensional stability
• Excellent resistance to harsh chemicals
• High wear resistance
• Low coefficient of friction; high abrasion and cut-through resistance
• Excellent performance at high temperatures

Performance Plastics uses various grades of PEEK resin as metal replacements in applications where few other fluoropolymers would be considered. PEEK is widely used in industries such as: aerospace (commercial and defense), automotive, marine, industrial and energy (fossil fuel and renewable). To discover how PEEK polymer resins can make the transition from metal to thermoplastic easier, please visit our website at https://performanceplastics.com/capabilities/polymer-seals or contact Rich Reed, Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® tools are made from Torlon®, a high strength polymer, creating a non-metallic tool that will not damage composite structures during use. The EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutters, bits, and discs for removal of adhesives on aircrafts. The product line also includes a variety of kits containing a selection of parts and sizes.

Traditionally, aerospace maintenance professional removed sealants and adhesives from from gaps utilizing solvents and/or abrasive scraper tools.  Solvents are very dangerous in that they may dissolve non intended materials, and also produce hazardous fumes.  Abrasive scraper tools are often hard to control and may cause unintended substrate damage.

EnduroSharp® Torlon® Gap Filler Removal (GFR) Bits are designed for use with an ergonomically-designed pneumatic tool. The tools provide aerospace maintenance professionals with an effective method of safely removing flexibilized epoxy gap materials from gaps and epoxy fillers from fasteners without damaging composite substructures and fasteners.

EnduroSharp® Torlon® Gap Filler Removal (GFR) Bits are available in a spiral single fluted, 1.70″ X 0.162″ configuration and shipped 10 parts per box.

The EnduroSharp® Torlon® Gap Filler Removal Bits are just one of the many different items offered in the EnduroSharp® product line. Contact Rich Reed our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com,  for more information on our EnduroSharp® kits and products.

Performance Plastics is a leader in providing innovative production solutions for our customers.  We have the opportunity to work on many new projects annually and follow a process guideline called our “Project Development Roadmap”.  This process is formatted in a way that everyone involved has a clear view and set expectations.

It has been our experience that the launch of a new product can be an overwhelming event for most companies.  Product innovation, testing, proving, and marketing all take toll. Performance Plastics works as a partner on projects to ensure successful outcomes. We go out of our way to make the process as smooth as possible.

With every new opportunity, we use our Product Development Roadmap to identify steps and milestones to ensure a successful project:

  • Set initial guidelines on budget, minimum quantity, investment, and contractual time commitments.

Before any true collaboration can begin, there truly must be a meeting of the minds.  We want to respect the customer and have the customer respect our process in turn.  Budget, quantities, and projected time frame are all key components of a true understanding.

  • Agreement on conceptual design and function of mold

Everyone truly needs to understand what the project needs to accomplish.  Often in times of negotiation, companies are so focused on details that the reason for the project gets lost.  We are Performance Plastics like to begin with the end in mind.  We begin with the required product outcome and work backwards.

  • Customer to issue PO

This is where our process is very different from the competition.  While some companies will perform the initial part design without a PO, we want the customer to be fully engaged in this process.  Our engineers work hand in hand with our partner’s engineers to solve the issues and meet the deliverables.  We require our customers to buy into the project, which requires commitment, time, and money.

  • PPL to perform initial part DFM (Design for Manufacturing), using mold fill, cooling, and warpage analysis to optimize part design. PPL to request customer approval.

The design for manufacturability is the general engineering practice of designing products in such a way that they are easy to manufacture.  But easy to manufacture does not always produce the best result.  We collaborate with our customers to design molds in ways that meet the expectations and requirements of the project, addressing mold fill, cooling, and warpage analysis data.

  • Customer to approve the initial DFM and ok PPL to launch mold design.

Keeping expectations in mind, we pause our process and perform an in-depth review with our customers.  At this point we re-evaluate the outcomes, make the needed modifications and engage in an open dialog regarding process improvements.

  • PPL to provide final DFM design to customer for approval.

 Taking in account modifications from the initial DFM, we then present out final version for the customer for them to independently verify and approve.  This is the final step at which we have open discussions on revisions, changes and process improvements.

  • Upon approval, PPL to launch mold construction.

Only after all these steps do we begin the mold construction.  We want to make sure all our parameters are satisfied in all design elements and deliverables before we begin construction.

It has been our experience that the more time we spend getting the process laid out correctly in the beginning, the fewer problems we will have when we begin production.  We want to make sure the whole team has clear expectations of the project guidelines, timeframes, and outcomes.

For more information on our “Project Development Roadmap”, or any Performance Plastics’ projects, please contact Rich Reed, Vice President of Sales and Marketing at rreed@performanceplastics.com or 513.321.8404.