Performance Plastics is pleased to announce the promotion of Lear Jackson to Quality Manager
  |  ,

 CINCINNATI, OH, May 23, 2022 /24-7PressRelease/ — Performance Plastics is pleased to announce the promotion of Lear Jackson to Quality Manager. Lear has been with Performance Plastics for over 8 years, most recently as a Quality System Coordinator, and will have responsibility overseeing the quality operations of our plant.

“Lear has been with Performance Plastics through our recent growth and has brought a fresh perspective to our operations,” said Chris Lawson, Chief Operating Officer. “Shifting Lear to this new role is a statement of our commitment to expand our capabilities, increase quality satisfaction and improve overall lead times. We are excited that Lear has accepted the challenge of a new role.”

Lear Jackson is a native of southwestern Ohio growing up in Hamilton and attending Hamilton High School. She is married and has one son, Jelani. She currently has CQIA, CQT and CIA designations, and plans to pursue additional credentials. She brings to this new role extensive knowledge of all our proprietary processes and the operations of our organization.

“I am excited for the new challenge of working with our staff to improve quality standards and increase overall customer satisfaction,” stated Jackson. “I plan to work with all the members of our team to explore and implement new process improvement strategies and technologies.”

Performance Plastics, located in Cincinnati, OH is a custom injection molder of high performance, tight tolerance thermoplastic components for markets where failure is not an option, including Medical, Aerospace/Defense, and Industrial.

Related Link:
https://performanceplastics.com

When you need parts that can withstand extreme operating conditions, fluoropolymers may fit the bill. Parts like roofing membranes, fuel tubes, biomedical devices, and wires are all common applications of fluoropolymers.

FEP Fluoropolymer:

Fluorinated ethylene propylene (FEP resin) is a melt-processable fluoropolymer. FEP has low gas and permeability properties, can be extruded in long continuous lengths, and possesses excellent UV transmission rating. FEP is also suitable for use in a biomedical setting and is gamma sterilizable.

All of these attributes make FEP an ideal fluoropolymer for a diverse range of applications from environmental monitoring equipment to medical devices and electronics. Because it is a thermoplastic, FEP is also easily heat-formed, tipped, tapered, flared, and flanged.

PFA Fluoropolymer:

Perfluoroalkoxy (PFA resin) is a melt-processable fluoropolymer that combines many of the best traits of PTFE and FEP. At 500 °F (260 °C), PFA has a higher service temperature than FEP and maintains its mechanical integrity in extreme temperatures even when exposed to caustic chemicals. PFA has greater tensile strength than PTFE and a smoother surface finish than both PTFE and FEP.

PFA’s is a top choice in semiconductor, chemical, oil and gas, aerospace, automotive, pharmaceutical, and medical industries. This fluoropolymer has excellent lubricity, clarity, flexibility, and chemical resistance, making it a versatile choice.

FEP vs PFA Fluoropolymers

FEP and PFA are injection moldable, highly inert, compatible with most organic compounds, have good barrier properties and high continuous use temperatures. They are virtually impervious to chemical, enzyme and microbiological attack and stiffer than PTFE. The non-stick properties of these polymers can also be useful to reduce liquid, gel and powder adhesion. Fluoropolymers in general, have good dielectric properties and are resistant to atmospheric degradation.
While significantly less expensive than PFA, FEP is very difficult to mold due to its low viscosity. However, Performance Plastics has developed proprietary tooling and processes enabling the injection molding of small, thin-walled, complex FEP parts.

• More transparent than PTFE (not injection moldable)

• Better gas and vapor permeability properties than PTFE
• Maximum working temperature 400°F
• Approximately 1/3 the cost of PFA

PFA is significantly easier to mold than FEP, however, it is significantly more expensive.

• Higher continuous service temperature than FEP
• Maximum working temperature 500°F
• Difference in molecular structure gives PFA improved flow, creep resistance and thermal stability.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics. Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds. For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales and Marketing at 513.321.8404 or email at rreed@performanceplastics.com

 
Mating parts providing a fluid or gas seal are critical components in most mechanical systems. We commonly think of them in valves and connector assemblies, but they are also found in pressure vessels, compressors, pumps, motors, engines, transmissions, and almost all mechanical power trains. Seals, especially those that mate to moving parts, have a demanding set of quality requirements. Each application has its own specific needs, but all seals are characterized by tight dimensional tolerances and excellent surface finish.

Our customer wanted to improve the usable life and leakage profile of a valve without absorbing any increase in component cost.  The sealing surface specifications were tightened to 0.0005 inches (12.7 µ) which was key to accomplishing the performance improvements.

The previous supplier of this component was unable to meet the more stringent sealing surface dimensional tolerances “out of the mold” necessitating a finish machining operation to bring the part into tolerance.  However, machining the sealing surface removed the resin-rich surface of the part creating micro-cracks in the surface and exposing reinforcing fibers. Both of these unavoidable consequences of machining negatively impacted component performance, useful life and cost.

Solution

Performance Plastics knew eliminating the machining operation would improve strength, reduce trapped impurities, and lower manufacturing cost.  Our engineering team focused on producing a “true net shape” part directly out of the mold.   Key to accomplishing the customers goals involved leveraging our proprietary, iterative tool design process.  It required making a 3D CT scan of preliminary molded parts measuring, in this case, approximately 1 million critical part dimensions.  This analysis identified minute distortions.  Utilizing internally developed proprietary software, PPL integrated the CT scan data with CAD/CAM software to make exacting mold modifications eliminating the out of tolerance conditions.  This process contributed to producing a best in class “out-of-mold” conforming part.

The manufacturing process also had to be optimized to produce the desired performance results.  Although the material posed molding challenges, PPL decided to direct gate the part at the top to ensure symmetry of material flow throughout the cavity, critical in achieving roundness to the sealing surface.

The results of development program surprised everyone. Performance Plastics was able to achieve  “out of mold” net shape parts with a seal surface capable of meeting sealing ranges of 100 psi to 3,000 psi, with no porosity and consistently meeting dimensional tolerances of 0.0003 inches, or 7.62 µ. Eliminating the need for subsequent finish machining dropped the leakage rate for the valve by 50%, from 1.0 scfm to 0.5 scfm.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics.  Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds. For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales and Marketing at 513.321.8404 or email at rreed@performanceplastics.com