At Performance Plastics, we combine design expertise with automation to ensure tight tolerance part quality and consistency.  Automation allows us to efficiently inspect 100 percent of the parts we produce.

Automation is used on all our orders – high and low volume.  While automation is critical on high-volume orders, we utilize the technology on our lower volume for technically challenging, mission-critical applications to ensure quality.

Some of our mission-critical applications include:

  • We make parts that seal off chemicals in order to prevent dangerous leaks in the aerospace industry.
  • We manufacture parts used in plasma cutters that ensure two different types of gases are mixed correctly right at the nozzle for diversified industrial applications.
  • We produce parts that are used to test tissue samples for the medical industry.

At Performance Plastics, we use a combination of automation across all our applications.  We incorporate automation where cylinders, vacuums, and other actuators are moving products from place to place around the production facility – always testing our tolerances throughout the product cycle.

However, automation does make maintaining tight tolerances a bit simpler. An example is in our over-molding process.  Many parts we manufacture include battery contacts that run internally, a metal base, or features made from something other than plastics.  Automation can be used to feed these parts into the process without an operator.  Less human interaction reduces the possibility of human error and/or injury. Automation places the part in the mold to be over-molded, pulls the completed part out, and then re-inserts the next part quickly and reliably.

Where automation really produces an advantage is at the bottom line – cost savings. For example, cycle times can be greatly improved because automation allows us to do multiple things at once, such as vision checks and leak checks at the same time.

When our reliability increases, our customers’ risk is greatly reduced. Higher reliability and repeatability result in a lower risk of non-compliance.

To learn more about Performance Plastics’ uses of automation, contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

 

 

How to choose the best technology for your project.

 

Plastic injection molding and 3D printing are both viable technologies. 3D printing is an additive printing process that creates objects by building up layers of material, while injection molding uses a mold that is filled with molten materials that cool and harden to produce parts.

The use of 3D printing in innovative and experimental scenarios is a viable technology for its ability to create custom plastic part designs quickly.  However, the 3D process limits your material choices, as all materials are not a fit or even available in a form suitable for 3D printing.

3D printing is best used for:

  • Quick turnaround times
  • Low volume, slower production speeds
  • Parts in the design phase with frequent changes – prototyping, lower product quality
  • Smaller part sizes

Once a design has been finalized, plastic injection molding becomes the optimal process.  Most of today’s plastic parts are manufactured using plastic injection molding – it’s best for producing large quantities quickly and reliably in high-volume runs. You have greater material options with plastic injection molding, and you can control material weight, cost, and flexibility with endless combinations of materials.  It helps organizations control the cost and integrity of designs with complexities and tight tolerances.

Plastic Injection molding is best used for:

  • High volume
  • Finalized part design
  • Enhanced strength and durability
  • Complex, precision, detailed parts

At Performance Plastics we have optimized many projects that were once manufactured using 3D printing, only to discover that injection molding was the more efficient technology.  As experts in FEP, PFA, PAI (Torlon), PEEK, and Ultem resins we frequently work with mission-critical, time-sensitive applications.  3D printing is an essential component of the design process, but If you have a project that requires high volume (5,000+ parts per year), high-temperature resins, and tight tolerances with complex geometries, plastic injection molding is your solution.

Performance Plastics’ team of experienced engineers possesses the expertise to design and manufacture technically challenging projects and offer complex solutions within harsh application industries.

For more information on how Performance Plastics can assist in your material selection challenges, please contact Rich Reed, VP of Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com.

 

The shortage of glass has been an ongoing issue. Experts say the price of glass is on the rise as global supply chain issues continue throughout the world.  The glass shortage affects all industries that rely on glass for their containers, but right now, with the convergence of annual flu, the emergence of new COVID variants (Omicron), and the outbreak of Respiratory Syncytial Virus Infection (RSV) in children, the medical field is in dire need of glass for vials.

Silicon, which is one of the materials that is used in glass manufacturing has been in short supply for over a year.  Medical vials are made of Type I borosilicate glass, and this form uses the most silicon. The decreases in the recycling rates during the pandemic, are additionally hurting the production of glass vials.

Fluoropolymers such as FEP, PFA, and PCTFE are great alternative materials for glass. These fluoropolymers are superior to conventional plastics. Their inert, non-reactive, and unmatched durability makes their properties ideal for use in the medical industry. These fluoropolymers are also non-stick, ensuring the product does not adsorb to surfaces. They are also virtually impervious to chemical, enzyme, and microbiological attacks. All the benefits of FEP, PFA, and PCTFE make these fluoropolymers a perfect material to create vials out of, especially since they are injection moldable.

At Performance Plastics, we have extensive experience in injection molding fluoropolymers. We have developed proprietary tooling and processes enabling the injection molding of small, thin-walled, complex parts. Our expertise in fluoropolymers and injection molding can be the solution to the shortage of glass.

For more information on how to use fluoropolymers as your glass shortage solution contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.