

TORCE RESEARCH LABORATOR

Integrity ★ Service ★ Excellence

EnduroSharp™ Nonmetallic (Torlon®) Aircraft Maintenance Tools

SAMPE

24 May 2018

Paul Childers*
Brett Bolan and Jim Mazza
AFRL/RXSA
Systems Support Division
Materials & Manufacturing Directorate
Air Force Research Laboratory

*University of Dayton Research Institute

Current Removal Tools

- Many nonmetallic scrapers are available and approved or used for a variety of material removal applications
- Effectiveness of existing nonmetallic tools varies, depending on the application, but the tools are generally inefficient & short-lived
 - Typically incapable of shearing material; removal by brute force
 - Edges dull quickly and cannot be readily restored
- Metallic & improvised tools (usually unapproved) can be more efficient for material removal but pose great risk to underlying structure

Selection of Fielded Nonmetallic Tools

Typical Metallic Tools

Modified Acid Brush Used to Remove Sealant

New Torlon® Nonmetallic Tools

- Under contract with the Air Force Research Laboratory's Materials Integrity Branch (AFRL/RXSA), the University of Dayton Research Institute (UDRI) developed improved material removal tools & accessories
- Transitioning developed tools to multiple weapons systems for material removal applications on composite components
- Injection molded from Torlon® 5030 Solvay's polyamide-imide (PAI) resin
 - 30% glass reinforced plastic
- Commercially available from Performance Plastics, LTD (Cincinnati, OH)
 - EnduroSharp™ trade name

AFRL Torlon Tools and Accessories

Torlon® Thermoplastic

- Torlon® is Solvay's polyamide-imide (PAI) resin
 - High-end niche material processing at ≈371 °C (700°F)
 - 21-day extended cure at 260°C (500°F) after molding (crosslinks resin)
 - Behaves like a thermoset (does not soften but degrades at 260°C (500°F))
 - Relatively high strength and stiffness
 - Solvent resistant
- Few injection molders in the world
 - Hard to process (softens but does not flow freely at 371°C (700°F))

- Requires more expensive injection molding equipment

Torlon® Nonmetallic Tool Development

- Torlon nonmetallic tools addressed in this presentation:
 - Gap Filler Removal Bit (GFR-Bit)
 - 4 configurations (modeled after mantellic counterparts)
 - 16 candidate materials (resin/fiber combinations)
 - Diameter (4.4 mm (0.162")) sized to remove filler from a common gap width
 - Torlon Scraper Blade (TSB)
 - 5 widths
 - 25°/25° angle double sided (asymmetrical 1/3 to 2/3) cutting edge
 - Torlon Gap Blades (TGB)
 - 5 widths, 3 depths
 - 3 cutting edges

A36 Steel

2300

Ultem

1000

- Chrome-plated mold surface
- 2 Straight-fluted cavities
- 2 Spiral fluted cavities

PEEK + PE

4-300 watt heaters (2 per half)

Hand loaded (2) insert locations

Mated mold

Injection machine

Thermocouples

Gap Filler Removal Test Panel

25/13

Droks20/32

Sorine

Dull --

Sample Tested GFR-Bits

- Single fluted spiral bit design chosen as optimal design
- Evaluations conducted at multiple psi setting
- 6,000 7,000 rpm required for maximum material removal efficiency and bit life
- Dotco® 12,000 rpm, 90-degree hand-held grinder with air pressure reduced to 241-310 kPa (35-45 psi)
- Lower-speed (rpm) grinders not available
 - Higher-speed grinders lose significant torque when adjusted to 6,000 rpm
 - Tachometer used to confirm air adjusted to obtain desired speed

				Bit Intial	Bit Post		
Material		Material Removed		Weight	Weight	Material	
Group	Bit Material	(New Filler)	Time	(Grams)	(Grams)	Loss (Grams)	Precent Loss
LNP		30.48 cm x 6.35 mm x 4.5 mm					
LINP	EC008PXQ	(12.0 in x 0.250 in x 0.180 in)	00:03:34	1.4414	1.4247	0.0167	1.16
Ultem		30.48 cm x 6.35 mm x 4.5 mm					
Oiteili	2300	(12.0 in x 0.250 in x 0.180 in)	00:03:01	1.5012	1.4931	0.0081	0.54
		30.48 cm x 6.35 mm x 4.5 mm					
	150CA30	(12.0 in x 0.250 in x 0.180 in)	00:02:42	1.3471	1.3406	0.0065	0.48
Peek		30.48 cm x 6.35 mm x 4.5 mm					
Реек	450GL	(12.0 in x 0.250 in x 0.180 in)	00:02:57	1.4011	1.3976	0.0035	0.25
		30.48 cm x 6.35 mm x 4.5 mm					
	2289HF	(12.0 in x 0.250 in x 0.180 in)	00:02:15	1.4400	1.4283	0.0117	0.81

- Post test images and results of down selected materials
 - Selected materials still lacked desired durability and performance
- Manufactured bits from Torlon material (filled and unfilled)

				Bit Initial	Bit Post		
Material		Material Removed		Weight	Weight	Material	
Group	Bit Material	(New Filler)	Time	(Grams)	(Grams)	Loss (Grams)	Percent Loss
		25.5 cm x 6.35 mm x 4.57 mm					
	4275	(12.0 in x 0.250 in x 0.180 in)	00:02:26	1.501	1.4862	0.0148	0.99
		16.5 cm x 6.35 mm x 4.57 mm					
Torlon	4301	(6.5 in x .250 in x 0.180 in)	00:00:58	1.4621	1.4568	0.0053	0.36
		25.5 cm x 6.35 mm x 4.57 mm					
	5030	(12.0 in 0.250 in x 0.180 in)	00:01:12	1.6385	1.6128	0.0257	1.57

- Post test images and results of Torlon materials
- Torlon 5030 selected at final material

Damage Evaluation Test Gap Panel Configuration

Test Panel Gap side Walls

Test Panel Gap Bottom

Test Panel Gap side Walls (Magnified)

Test Panel Gap Bottom (Magnified)

Torlon 5030 GFR-Bit after Evaluation

GFR-Bit Operated at 6,000 rpm

GFR-Bits

Gap Filler Removed

- Removes "flexibilized" epoxy resin gap filler material
- Not suitable for removal of extremely soft or highly elastic materials

GFR Bit Performance

- Removes minimum of 3 feet of flexibilized epoxy resin gap filler
 - Operated at 6,000 7,000 rpm and using proper technique
 - Demonstrated on both composite and metallic structure (primed & unprimed)
 - No damage to underlying primer, composite structure, or metallic structure
- Removes epoxy resin fastener fill from a minimum of 45 fastener heads
 - Operated at 6,000 7,000 rpm
 - Demonstrated on both steel and titanium fasteners
 - No damage to fasteners or surrounding composite structure

Torlon Scraper Blades (TSBs)

Available Torlon Scraper Blades

- More durable nonmetallic blade designed to remove elastomeric coatings, preformed protective boots, tapes, sealants, adhesive residue, and gap filler materials
 - Five widths available (4.3 mm (0.170"), 5.8 mm (0.230"), 12.7 mm (0.500"), 19 mm (0.750"), and 30.5 mm (1.20"))
 - Heat resistant to 500°F & resistant to standard aircraft fluids/solvents
- Improvements over existing nonmetallic scrapers
 - Decreased material removal times
 - Blade stays better engaged in material due to Torlon stiffness & edge design
 - Holds cutting edge longer, easier to sharpen, machinable to reconfigure

TSB Handle and Pneumatic Tool

- TSBs used with Standard and pocket blade holders or COTS pneumatic tool
 - Quick disconnect for blade exchange
 - TSB head attachment fits COTS pneumatic tool without tool modification
 - Sharpen and maintain proper asymmetrical cutting edge with unique sharping fixture

Removing Coating Material (with & without heat assistance)

Boot/Tape Removal

Residual Epoxy Adhesive

Residual Epoxy Adhesive Removed

While trying to damage composite, TSB degraded leaving Torlon remnants on composite panel without damaging composite

Thickness variation & porosity concentration

- Material removal capability assessed in field and lab;
 shown to require less effort & speeds removal vs other plastic blades
- TSB quality, strength & impact on substrate materials evaluated in lab

TSB 1200 (25°)	TSB 750 (25°)	TSB 500 (25°)	TSB 230 (25°)	TSB 170 (25°)	
TSB 1200 (45°)	TSB 750 (45°)	TSB 500 (45°)	TSB 230 (45°)	TSB 170 (45°)	25° Angle
TSB 1200 (25°)	TSB 750 (25°)	TSB 500 (25°)	TSB 230 (25°)	TSB 170 (25°)	45° Angle

TSB Unprimed and Primed Test Panel

Panel ID	Specimen ID	Blade Style	Part Number	PSI	Blade Angle to Surface	Number of Passes	Elapsed Time (Seconds)	Test Area Length Millimeters (inches)	Force Kilograms (pounds)		
	Primed and Unprimed Test Panel										
								31.8 x 8.9	4.8-6.0		
UPC-1	UPC-1-1 thru 5	TSB	TSB-(170-1200)	90	25°	6	15.85	(1.25×3.5)	(10.6-3.4)		
								31.8 x 8.9	5.08-6.6		
UPC-1	UPC-1-6 thru 12	TSB	TSB-(170-1200)	90	45°	6	17.42	(1.25×3.5)	(11.2-14.6)		
								31.8 x 8.9	4.8-6.0		
PC-1	UPC-1-1 thru 5	TSB	TSB-(170-1200)	90	25°	6	11.93	(1.25×3.5)	(10.6-3.4)		
								31.8 x 8.9	5.08-6.6		
PC-2	UPC-1-6 thru 12	TSB	TSB-(170-1200)	90	45°	6	12.59	(1.25×3.5)	(11.2-14.6)		

TSB Test Metrics

TSB-1200 @ 25° Tool Angle on Unprimed Test Panel

TSB-1200 @ 45° Tool Angle on Primed Test Panel

TSB-1200 @ 25° Tool Angle on Primed Test Panel

TSB-1200 @ 45° Tool Angle on Primed Test Panel

TSB-170 @ 25° Tool Angle on Primed Test Panel

TSB-750 @ 45° Tool Angle on Primed Test Panel

Torlon Gap Blades (TGBs)

Concept & Prototype

GFR Blades and Adapters

- Unique blades designed to remove gap filler materials
 - Shears material at bottom and sides of gap; less stress for operator
 - Five widths available (1.9 mm (0.075"), 2.5 mm (0.100"), 3.05 mm (0.125"), 4.3 mm (0.170"), and 5.8 mm (0.230"))
 - Three depths for each width (1.9 mm (0.075"), 4.1 mm (0.160"), and 6.35 mm (0.250"))
- Intended for incremental removal using the multiple-depth blades
 - Less effort for tougher materials & deeper gaps; enables partial depth removal

TGB Adapter Handle & Pneumatic Tool

TGB adapter

"Pocket" Holder with Adapter & Blade

- TGBs used in adapter with standard & pocket handles or COTS pneumatic tool
 - Quick disconnect of adapter from handle or pneumatic tool
 - Quick disconnect for blade exchange while adapter remains on handle/tool
 - "Pocket" blade holder allows for work in restricted areas or with tight radii

Torlon gap blade in adapter on COTS handle and pneumatic tool

- TGBs reduce gap filler removal time when used with proper technique
 - Plunge through gap then level off to allow adapter to ride along surface
 - Use three blade depths incrementally (shallowest to deepest)
 - Blade can be narrower than gap and still be used efficiently to remove filler
- Blades break rather than penetrate/damage substrate if twisted in gap
- TGBs can be sharpened with abrasive paper

Lab Evaluation

Thickness variation & porosity concentration

Field demo's and User Performance Evaluation

- Material removal capability assessed in field and lab;
 shown to require less effort & speeds removal vs other plastic blades
- TGB quality, impact on substrate materials evaluated in lab

TGB Unprimed and Primed Test Panel

Panel ID	Gap ID	Blade Style	Part Number	Disc/Blade Thickness mm (in)	Blade Depth mm (in)	Gap Width mm (in)	Gap Depth mm (in)	kPa (psi)	Number of Passes	Elaspsed Time (Seconds)	Gap Length cm (in)	Force kg (lbs)
	Unprimed and Primed Unfilled Gap Test Panel											
UPUFGC-1	16	TGB	TGB-23-25	19.05 (0.075)	6.35 (0.250)	2.41 (0.095)	4.88 (0.192)	620.5 (90)	1	14.67	30.5 (12.0)	1.59-2.27 (3.5-5.0)
UPUFGC-1	17	TGB	TGB-23-25	19.05 (0.075)	6.35 (0.250)	2.41 (0.095)	4.88 (0.192)	620.5 (90)	6	28.22	30.5 (12.0)	1.59-2.27 (3.5-5.0)
PUFGC-1	16	TGB	TGB-23-25	5.85 (0.230)	6.35 (0.250)	6.35 (0.250)	4.88 (0.192)	620.5 (90)	1	11.23	30.5 (12.0)	1.59-2.27 (3.5-5.0)
PUFGC-1	17	TGB	TGB-23-25	5.85 (0.230)	6.35 (0.250)	6.35 (0.250)	4.88 (0.192)	620.5 (90)	6	25.33	30.5 (12.0)	1.59-2.27 (3.5-5.0)

TGB Test Metrics

TGB-23-25: Single Pass on Unprimed Test Panel

TGB-23-25: Six Passes on Unprimed Test Panel

TGB-23-25: Single Pass on Primed Test Panel

TGB-23-25: Six Passes on Primed Test Panel

Commercial Availability

ENDUROSHARP™ TORLON® NONMETALLIC TOOLS

- Performance Plastics, LTD (Cincinnati, OH) licensed by UDRI
 - EnduroSharp™ trade name; one-stop shop for Torlon tools & accessories

Other Torlon Tools

GFR Discs

Torlon Reamers

Torlon Cutters & Accessories

- GFR Discs (used on oscillating tools)
 - Gap filler removal; scoring thick elastomeric coatings
- Torlon Reamers (adhesive, etc. removal from holes)
- Torlon Adhesive Cutters
 - Similar to metallic reverse counterbore cutters
 - Three sizes designed for removal of residual adhesive/sealant associated with bonded nutplates
 - Associated mandrels (including tethered); other accessories

GFR Disc Removing Gap Filler

Summary

- We are transitioning Torlon material removal tools developed in house
- EnduroSharp[™] Torlon[®] blades and other tools commercially available from Performance Plastics, LTD in Cincinnati (individually & kits)
 - Includes accessories (handles, pneumatic tool, sharpening fixture)
- EnduroSharp tools offer improvements over other material removal options
 - Significantly less damage potential than often-used metallic tools
 - Faster material removal rates than other nonmetallic tools for most applications
 - Less operator effort required than for other nonmetallic tools
 - Maintain sharp edges; easier to sharpen than other nonmetallic tools
- In use or under evaluation by 11 weapons systems at >10 DoD locations
- Procured by ≈50 organizations (incl. aerospace OEMs & nonaerospace)

Acknowledgements

- Funding for this work was provided by several sources, including the AFRL Sustainment Office.
- Individuals and organizations too numerous to mention have contributed to the effort, including:
 - Mike Fleischmann, Beau Turner, Pete Sciandra, Sarah McIntosh, Karl Batig, Don Mottor, Paul Smith, Ken Hollingsworth, & Paul Barnum (Northrop Grumman Corporation)
 - Eric Atkins (Lockheed Martin)
 - Jason Cary, Dave Nielson, & Brandon Smith (AFLCMC/WWUV)
 - Ryan Osysko, Kevin Davis, Al Fletcher, & Chad Hunter (AFRL/RXS)
 - SSgt Bryan Adkins OUSD (AT&L)

