Removal and Replacement of Failed Bonded Nutplates Utilizing Nonmetallic Torlon[®] Adhesive Cutters

SAMPE

24 May 2018

Brett Bolan Paul Childers* Jim Mazza AFRL/RXSA Systems Support Division Materials & Manufacturing Directorate Air Force Research Laboratory

*University of Dayton Research Institute

Integrity ★ Service ★ Excellence

Introduction

Adhesively bonded nutplates in manufacture of composite aerospace structures increasing (tens of thousands for some aircraft)

Utilized when two sided access not possible and/or maintenance access panels

- reducing # of holes
- reducing stress concentrations
- reducing installation & production costs
- reducing weight and rework

Operational units – nutplates that tend to fail are those used to secure panels and covers as they are frequently accessed (removed and reinstalled)

Failed Nutplates

Nutplates fail for a variety of reasons

- poor surface prep

 wrong grip length fastener (too long) when engaged pushing nutplate off structure

- fastener locked up in nut element (i.e. not turning) due to excessive heat from fastener during installation

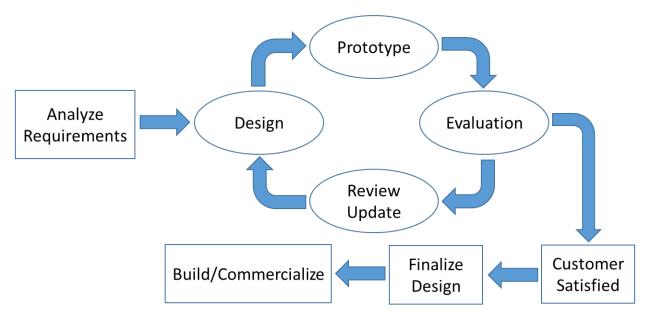
- Improper fastener torque sequencing for panel installation

Following aircraft specific T.O. – takes from 24 to 72 hrs to effect a repair

Replacement of Failed Nutplate

- Removal of residual sealant/adhesive
- Failed nutplate location properly prep'd for bonding
- Preparing faying surface of nutplate
- Verifying faying surfaces readiness/acceptability for bonding
- Reinstalling nutplate with 2-part adhesive

All steps in removal & replacement of a failed nutplate are important to returning aircraft to operational status - AFRL working with OEM to address Focus of this effort: reducing time to remove residual sealant/adhesive from hrs to min



Iterative process followed to develop new removal tool multiple efforts conducted in parallel to reduce time to deliver final product

Key - Analyzing Requirements

Comprehensive understanding of end-user requirements (OEM and aircraft operational units) Multiple site visits: discussions with OEM, Field Service Engineers, technicians & maintainers

Tool to be used in an operational environment Needs to access most failed nutplate locations (target 90% or greater) Rapidly prepare structure for a new nutplate w/o damaging underlying structure

Operational Units

Survey of Current Practices

Current T.O. authorized plastic removal tools - did not adequately perform function

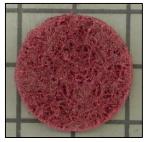
- time consuming

Led to (in some instances):

Use of non-authorized metallic removal tools

- removed sealant/adhesive quickly
- high potential to damage structure scratches and gouges – extensive rework

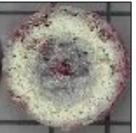
OEM Production


Survey of Current Practices

Early in the manufacturing process better access to aircraft structure – subsystems & hardware not installed

Nutplate failures further down the manufacturing line or on the flight-line

- similar challenges to operational units (restricted access)



Norton Vortex Medium Pad

Using a 3200 rpm pneumatic rotary tool with an abrasive pad to remove sealant/adhesive – heat generated causes sealant/adhesive to smear on faying surface and rapidly clogs pads

- 10 or more pads required to achieve clean surface
- access limited by throat depth
- cannot be used on composites

Determine if a Torlon scraper blade developed for another program is viable for this application

Attach 5030 glass-filled Torlon blade to a pneumatic driven tool to remove adhesive from a composite panel

Easily removes adhesive with no visible damage to underlying structure

Field trials demonstrated inability to access many locations due to tools bulkiness - does not meet "accessibility" requirement

Design: Prototype

Familiarity with general mechanics' tools

- Take concept of reverse counterbore tool used for metals and modify for current effort – fabricate from plastic

1st iteration – 3D printed cutters

Test concept – 3D printed 2 most prevalent sizes for nutplates - assessed form and fit

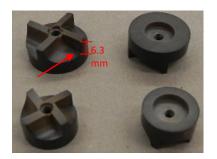
Transition into fabricating/machining from Torlon 5030 to fit both Andrews Tool and drill motor

Prototype Evolution

Trials of Torlon 5030 machined cutters

Effectively and quickly removed (in a min or less) remnant adhesive on aluminum substructure when attached to a 1400 rpm drill motor

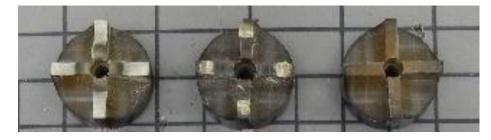
Blade edges worn away due to combination of adhesive's hardness and rotational speed of drill motor


Thin blades - 1.91mm (0.075") Blade draft - 3.8mm (0.15") deep

New design for cutters needed

Updated/Improved Cutter Design

Blade width increased to 2.84mm (0.1120") Draft increased to 6.35mm (0.25")


Evaluation – reran same test (w/ 1400 rpm drill motor) Notching of cutter blades observed where edges come in contact with adhesive

Focusing in on lower-speed models of tools

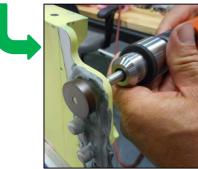
Andrews Tool company provided 3200, 1000, and 500 rpm tools for evaluation

@ 3200 rpm – notching

@ 1000 rpm - slight notching

@ 500 rpm - no observed damage/wear to cutter

Selected 500 rpm Andrews Tool & 600 rpm DOTCO Drill



Demonstration of new Torlon cutter design with 600 rpm drill motor to OEM & FSEs

Representative aircraft structure Failed nutplate location with sealant and adhesive

DOTCO pneumatic drill with Torlon cutter

Surface ready

In less < 2 min gone from failed nutplate to structure ready for bonding - Following T.O. procedure would have taken 10's of min

After one min – sealant removed and only a "ghosting" of adhesive remaining

Abrasive pad for final preparation

Customer Evaluation

Beta kits of Torlon cutters, mandrels, and Andrews Tool Adapter

Sent to Operational units for several months of Evaluation/Field Trials

- very positive feedback significantly reduced time for preparing structure for bonding
- found/discovered new requirements
 - additional size cutter desired 33mm (1.3") diameter for hard to access locations
 - difficult to remove Torlon cutters from tools
 - redesigned cutter to have a flat zone on its backside engage with a wrench

Prototyped a wrench – field trials discovered another requirement - wrench needs to engage with Andrews Tool adapter

Created new prototype - field trial - customer approved new design

Worked with Custom Tool Stamping Vendor to produce for kit deployment

Customer satisfied with Torlon cutter design now necessary to move to mass production

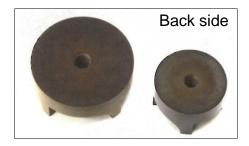
Optimal manufacturing method is injection molding

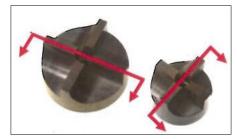
- reduces cost by a factor of ten
- more readily available

UDRI worked with AFC Tool Company – design of cutters for injection molding

and

Performance Plastics Ltd (PPL) for fabrication of injection mold tool & injection molding cutters


Torlon Cutters Validation of Injection Molded Cutters

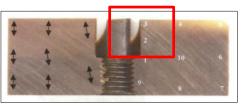


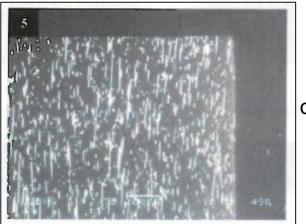
Final Article Evaluation

Machined Cutters

Section lines shown for photographic study

Injection Molded Cutters






REGEARCH LABORING

Representative cross-section through thickness of a cutter

Focusing on cutter's edge saw only 2% increase in fiber density for injection molded cutter

Cutters from machined rod stock Fibers aligned perpendicular to cutters edge

Injection molded cutters Fibers have more random orientation

Injection molded cutters subjected to hands-on evaluation

- multiple trials on test articles
- easily & efficiently removed adhesive w/o damaging structure
- performed slightly better than machined versions

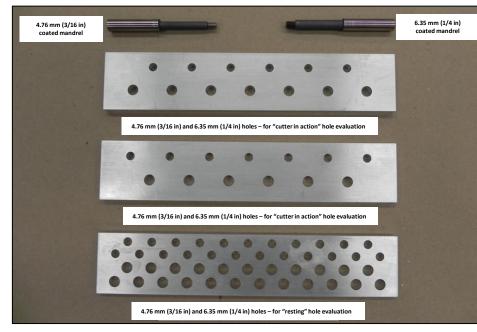
Mandrel Prototype Development

<u>1st iteration</u> 6061 AI standard mandrel galling observed – potential damage to hole

2nd iteration

4140 steel – shoulder added due to concern with FOD Several months in humid environment – pitting corrosion OEM concerned could cause damage to hole

<u>3rd iteration</u> 17-4 PH SS H-1000 condition Similar UTS but much higher corrosion resistance No observed corrosion after months of testing



Mandrel Evaluation

Two set of 4.76mm (3/16") and 6.35mm (1/4") dia 17-4 PH SS mandrels produced one set coated with molybdenum disulfide dry film lube

Spun in holes associated with nutplate fasteners of 5.46mm (0.215") and 6.99mm (0.275") dia Simulated aircraft structure - 2124-T8151 aluminum

Test panels prior to mandrel evaluation

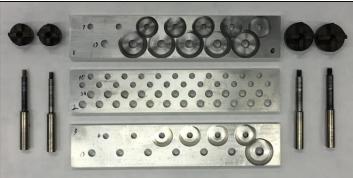
mandrel "resting" in the hole

Two conditions

mandrel simulating "cutter in action"

Mandrel Evaluation

Hole Assessment


In collaboration with OEM, two techniques employed to assess hole condition

3x Optical Microscope – topside hole

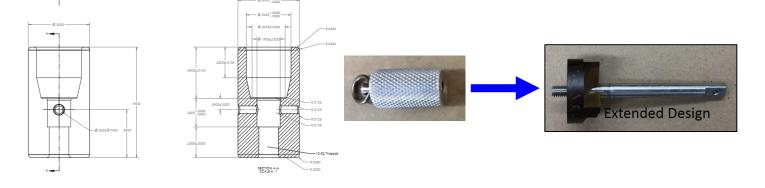
FaroArm - inside hole

Findings

(within equipment error)

- No damage created with or without coating on mandrel
- No damage to backside of aluminum structure despite aggressiveness with cutters

Tetherable Mandrel Development



Feedback from maintainers' evaluation of Torlon Cutter beta kits indicated need for a swivel apparatus to attach to cutter side of mandrel

Incorporated a COTS Offshore Angle ball bearing swivel into a housing that threads onto the extended mandrel

Noble Tool Corporation manufactured two prototypes

- taken to operational units and evaluated on-aircraft
- very favorably received

Units desired a multi-piece (segmented) tetherable mandrel of varying lengths

- allows easier access into confined areas
- defined length of each segment

Also desired smaller (shorter) swivel connectors

AFRL/UDRI contracted Noble Tool Corp to fabricate to the new specifications

Updated swivel connector

Segmented tetherable mandrel broken into a tether mounting hole (a), and a 12.7mm (0.5") (b), a 63.5 (2.50"), a 38.1 (1.50") segments

Segmented mandrels - different diameters

Segmented tetherable mandrels with Torlon cutters & tethers

AFRL/UDRI discovered compressed air available for use varied across OEM & operational units

- differed from manufacturer's recommendation (lower)
- affected efficiency of Andrews tool

AFRL/UDRI conducted study to determine minimum compressed air pressure required to provide adequate clamping pressure

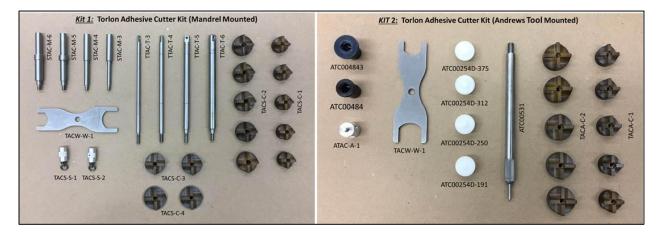
- sufficient to ensure cutting edge of Torlon cutters can remove adhesive
- if not sufficient too much adhesive remains more abrasive pads required increases time

In process of conducting study found inconsistences in tool operation - worked with Andrews Tool Corp to address

Bottom-Line: With tool improvements found that 90 psi inlet pressure to the tool (98N or 22lbs-force) is required to operate Andrews Tool efficiently

Surface Preparation Tool Force Readings (Andrews Tool Co) Pneumatic Tool Model # ATCP2L7-USPR500-88-R						
	621 kPa (90 psi)		687 kPa (100 psi)		758 kPa (110 psi)	
Avg of 20 cycles	85 (19)	98 (22)	107 (24)	116 (26)	116 (26)	129 (29)
Std Deviation	5.3 (1.2)	1.4 (0.32)	3.0 (0.68)	2.3 (0.51)	2.6 (0.59)	2.2 (0.50)

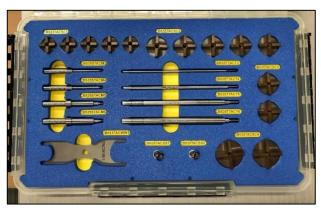
Andrews Tool clamping force evaluation



Original concept grown from initial beta kit which only included cutters, four mandrels and Andrews Tool adapters to:

(based upon evaluation and user input which drove additional requirements)

To complete usefulness for Operational units, the Torlon cutters and their associated tools must be put into a case that is:


- durable
- allows for easy identification of kit tools and components
- conveniently organization for rapid kit inventory

Prototype Torlon Adhesive Cutter Kit Configuration

Case Design

- Iterative process that followed the established New Product Development Cycle utilized to evolve non-metallic reverse counterbore Torlon Adhesive Cutters from concept to a commercialized product
- Key to successful development was close working relationship between AFRL/UDRI and targeted end-users (OEM and operational unit maintainers

Kit soon to be available

- will dramatically reduce time to remove remnant sealant/adhesive w/o damaging aircraft structure
- will result in reduction of maintenance manhours associated with repair/replacement of bonded nutplates
- will increase aircraft availability for Air Force and other services

This work was conducted under USAF contract FA8650-11-D-5610 Task Order 0001, Project 1-040 by UDRI under direction of AFRL's Materials Integrity Branch (AFRL/RXSA). Kara Storage (RXSA) served as the contract monitor. The following provided technical advice throughout the project: Chad Hunter (AFRL/RXS); Steve Twaddle and Stuart Street (Lockheed Martin); Wayne Cox, Mike Fleischmann, Ken Hollingsworth, Don Mottor, and Beau Turner (Northrop Grumman Corporation). Tim Swigart (RXSA) performed the evaluation of the spinning mandrel's effect on fastener holes. Brad Pinnell (UDRI) performed the photomicroscopy and cross-sections. Technical advice and material support were provided by Bruce Hackett (AFC Tools); Tom Mendel, Anthony Malone, and Heidi Page (Performance Plastics Limited); and Lynn Robinson (Noble Tools). Development support was provided by provided Lucas Abrahamson and Christian Pfledderer (Southwestern Ohio Council for Higher Education).