For four decades, Performance Plastics has been delivering the highest quality custom plastic injection molding solutions in the industry for our customers. We take a highly specialized and consultative approach, working closely with our customers to develop the solutions needed to solve the most complicated issues.

We have the experience to take a project from concept to production in-house. Every step of the process, from design and engineering, to tooling, protype, and full production, is done under the supervision of our experienced team. We produce complex, tight tolerance custom molded products of all types for the aerospace, medical and diversified industrial sectors.

We are technical specialists in collaborating and executing advanced, custom solutions for our customers. Injection-molded product fabrication is a complex process, especially when dealing with parts that are the size of a pin.  Our process is comprehensive and efficient to ensure that custom solutions can be delivered quickly and cost-effectively. High performance materials include PFA, FEP, ETFE, PVDF, PEEK, ULTEM, and Torlon.

With the ability to injection mold shot sizes as small as .015 grams with a wall thicknesses as thin as .008 of inch, Performance Plastics is anything but typical.  We are one of the leaders in tight tolerance, highly detailed medical parts.

For more information on how Performance Plastics can solve your tight tolerance molding challenges, please contact Rich Reed, VP Sales & Marketing at 513.321.8404 or [email protected].

Choosing the best technology for your application

Plastic injection molding and 3D printing are both viable technologies. 3D printing has given engineers the power to create designs and bring them to life in a matter of hours. Injection molding, on the other hand, is the proven technology for complexity, quality, and value. It is used to produce high-volume runs of complex plastic designs quickly and reliably. They are complimentary processes.

The use of 3D printing in innovative and experimental scenarios is a viable technology for its ability to create custom plastic part designs quickly.  The medical industry has embraced the use of the quick-turn technology to create custom items such as prosthetics, dental products, orthopedics, implants and more.  3D printing is the optimal choice during the design process, when low volume and design changes are necessary in refining the design process. However, the 3D process limits your material choices, as all materials are not a fit or even available in a form suitable for 3D printing.

3D printing is best used for:

  • Quick turnaround times
  • Low volume, slower production speeds
  • Parts in the design phase with frequent changes – prototyping, lower product quality
  • Smaller part sizes

Once a design has been finalized, plastic injection molding becomes the optimal process.  Most of today’s plastic parts are manufactured using plastic injection molding – it’s best for producing large quantities quickly and reliably in high volume runs. You have greater material options with plastic injection molding, and you can control material weight, cost, flexibility with endless combinations of materials.  It helps organizations control the cost and integrity of designs with complexities and tight tolerances.

Plastic Injection molding is best used for:

  • High volume
  • Finalized part design
  • Enhanced strength and durability
  • Complex, precision, detailed parts

At Performance Plastics we have been presented with many opportunities that were previously manufactured using 3D printing, only to discover that injection molding was the more appropriate technology.  As experts in FEP, PFA, PAI (Torlon), Ryton PPS, PEEK and Ultem resins we frequently work with mission-critical applications.  We understand that 3D printing can be an essential component of the design process.  If you have a project that requires high volume (5,000+ parts per year), has high-temperature resin requirements, tight tolerance with complex geometries, plastic injection molding is your solution.

If you don’t have a lot of time, need a lot of flexibility, and need a few parts right now, 3D printing may be your choice.  But, if you need to do large, repetitive product runs with complex geometries, tight tolerances, with high quality, consider plastic injection molding.

Plastic injection molding continues to become more and more sophisticated with part tolerances becoming tighter and tighter. Initially, tight tolerance was defined as +/-.002 inches and a very tight tolerance is +/-.001 inches. But today there are many factors that impact tight tolerance including part complexity and size, resin selection, tooling, and process conditions. So, getting the mold, part design, material selection and process correct is crucial when working with a product that requires tight tolerances.

Tight tolerances are essential when manufacturing complex parts, especially in the aerospace & defense, medical & life sciences, and diversified industrial sectors.  A few thousandths of an inch can be the difference between a component that fits and one that does not – if tight tolerances are not achieved properly the resulting products may underperform. So, it is critical that clients understand tight tolerances and their underlying objectives. Performance Plastics has parts in production that are +/-.0004 inches. Parts are measured in their Metrology lab with a CT Scanner.

 

Benefits of Tight Tolerances

There are many benefits to manufacturing parts with tight tolerances. It ensures that parts work together smoothly and fit as intended in their final form; parts mesh well and deliver enhanced functionality.   They produce lower failure rates and result in higher client satisfaction. Tight tolerances can also result in fewer post-molding processing requirements.  Additionally, tight tolerances allow for parts to be transitioned from metal to plastic, reducing overall weight and cost of the final product. This can be very advantageous in some industries, such as aerospace and defense.

Design for Tight Tolerances

Not every plastic injection molding project requires tight tolerances, and some organizations insist on tight tolerances for non-critical features.  Tight tolerance should only be required in instances where they are critical.  Many products require standard tolerancing because the consequences of failure are low.  As a general rule, designers should keep tolerances as large as possible while maintaining the desired functionality of the part.

Materials for Tight Tolerances

Additionally, material selection is a critical element in achieving tight tolerances.  Certain resins perform better under certain circumstances.  An experienced design engineer can guide a client in choosing the most affordable material that will deliver the best result.  So, it’s critical to bring in an experienced team early in the design process.

By engaging a production team during the design phase, part functionality, material selection and design can be discussed upfront, and the team can jointly develop a manufacturing process and correct materials that will produce high-precision components. It is crucial for organizations to partner with an experienced injection molder, who has expertise; the design and manufacturing teams should be integrated to allow manufacturability issues to be identified and addressed during the design process – thus saving significant time and unnecessary cost.

Establishing the right process and correct materials for each product and developing repeatability are key to manufacturing tight tolerance parts. While every application is different, there are some process and material conditions that impact tolerances. For example, quick cavity filling and uniform cooling at the desired temperature are conditions that are crucial to achieving repeatability, and thus, parts with tight tolerances.

Performance Plastics is highly skilled at designing and molding using high performance materials such as PEI-Ultem®, PAI-Torlon®, Ryton® PPS Plastic, PEEK, and Fluoropolymers such as FEP, PFA, and PVDF.  We work with our customers to solve technically challenging problems.   We can propose materials to implement part functionality in the design stage of development. We offer manufacturing solutions such as a clean room, the ability to offer direct gating of fluoropolymers, high volume production, visual inspection, and automated facilities.

For more information and solutions, please contact Rich Reed, Vice President of Sales & Marketing at 513-321-8404 or email [email protected]

 

Every project has its own needs and goals.  Complex geometries involving fine details or sharp corners often cannot be achieved by traditional plastic molding. Advanced plastic injection molding processes allow designers to combine numerous complex features into a single component, reducing the need for secondary machining or surface finishing operations.

Plastic Injection molding allows design freedom not easily matched by other traditional processes.  Performance Plastics’ augments the latest software tools including solid modeling, mold flow analysis and finite element analysis with an internally developed iterative tool design approach to deliver complex geometries and densities superior to most other operations.

Our tooling modification process results in best in class part tolerances, particularly useful in molding mission critical parts where dimensional attributes need to be extremely precise.  We use this approach to produce net shape molded parts of exceptional quality, eliminating or significantly reducing secondary matching operations resulting in material and process cost savings.

Performance Plastics, located in Cincinnati, OH has over 30 years’ experience in molding tight tolerance advanced plastics such as Fluoropolymers (FEP/PFA Torlon, Ryton plastic, Peek & Ultem) for many industries.  We have developed proprietary processes enabling injection molding of parts that are thin walled, with tight dimensional tolerances, and complex geometries.

For more information and solutions, please contact Rich Reed, Vice President of Sales & Marketing at 513-321-8404 or email [email protected].