Aircraft Maintenance Professionals are always looking for better and more efficient ways to complete their tasks.  Sometimes, in an effort to complete their tasks faster, they use items that were not designed for use in removal and damage to the underlying surfaces.

While there are currently many scraper blades on the market that are designed for adhesive removal, , not all materials are created equal.  Most of the blades currently on the market are made of three materials:  ABS, Phenolic, and Torlon.

 

ABS

Acrylonitrile Butadiene Styrene is a very tough, very durable thermoplastic used in a wide variety of applications. ABS is a common choice among other plastic production materials because of its durability, structural stability, and good corrosion, impact, chemical, and wear resistance.

ABS plastic is made when acrylonitrile and polystyrene monomers are polymerized with butadiene rubber to create acrylonitrile butadiene styrene (ABS). This blending is typically accomplished using an emulsification process, wherein materials that would otherwise not mix are formulated into a cohesive single product (think milk, where fats, oil, and water do not separate out of solution but exist as a homogenous mixture)

Phenolic

Phenolic is a laminated plastic used in a variety of custom plastic components due to its high strength, resistance to solvents, dielectric strength, and many other features.

Phenolics are manufactured by impregnating layers of material with a phenolic resin, and then applying heat and pressure, which transforms these layers into a solid mass. The result is a thermoset that is dense, dimensionally stable, structurally strong, has low creep, and is an excellent insulator.

Torlon

 

 

Torlon® is a high-strength, high-performance, melt-processable plastic material. It’s ability to perform under severe stress combined with its resistance to elevated temperatures makes it ideal for various applications across many industries.  Torlon (PAI) is recognized as being the highest-performing plastic that is melt-processable.

Polyamide-imides (PAIs) are thermoplastic amorphous polymers prepared by the condensation of an aromatic diamine, such as methylene diamine, and an anhydride, such as trimellitic acid chloride. PAIs have good mechanical, thermal, and chemical resistance, high strength, melt processability, and high heat capacity.

So, ABS is blended thermoplastic, Phenolic is impregnated plastic, and Torlon is a heat-treated, condensed thermoset.  Condensed thermoset materials are stronger, more resilient, and exhibit consistent performance without the risk of damaging the surfaces.

EnduroSharp® Torlon® aircraft maintenance tools were specifically designed by Performance Plastics, the Airforce Research Laboratory (ARL), and the University of Dayton Research Institute at Wright Patterson Air Force Base to safely and efficiently remove adhesives, sealants, and coatings while maintaining an effective edge and not damaging the underlying substrates.

For more information on Torlon® and/or EnduroSharp Torlon® Aircraft Maintenance Tools, please contact Aileen Crass, Product Marketing Manager at [email protected], or visit our website at www.performanceplastics.com/endurosharp.

 

Performance Plastics is pleased to announce two additions to its EnduroSharp® line of aircraft maintenance tools: the EnduroSharp® Torlon® Sealant Remover (TSR) and three new EnduroSharp® Adhesive Reamers (TAR).

The EnduroSharp® Torlon Sealant Removers (TSR) are non-metallic, spiral single-fluted cutters designed to remove non-metallic debris such as cured sealants and adhesives from larger surface areas such as fuel tanks.

Designed for use with a power drill, the cutters have a hex drive mounting feature and are reusable because they are made of a re-sharpenable material called Torlon®. The cutters were designed to remove sealants, filers, and coatings cleanly with no abrasion to the underlying paints, primers, or metal substrates.

The EnduroSharp® Torlon® Adhesive Reamers (TAR) are non-metallic, multi-fluted, straight-walled reamers. They can be used to remove debris such as cured sealants and adhesives from fastening and bushing holes in metallic or composite structures without damaging the structures. Originally offered in nine sizes, we have added three new sizes to the lineup: the TAR 171 (0.171” Diameter, Straight Fluted, ¼ Inch Hex Drive), TAR 234 (0.234” Diameter, Straight Fluted, ¼ inch Hex Drive), and TAR 296 (0.296” Diameter, Straight Fluted, ¼ inch Hex Drive).

Performance Plastics developed all EnduroSharp® Aircraft Maintenance Tools in conjunction with the University of Dayton Research Institute (UDRI), and the Air Force Research Laboratory (AFRL) to provide reliable and dependable material removal tools for military and commercial aircraft maintainers.

Approved for use by the USAF, USMC, USN, and many foreign military organizations, EnduroSharp® tools are designed to prevent damage to metallic and non-metallic components such as composites, metals, and fiberglass. The EnduroSharp® tools are stiffer and maintain a superior cutting edge compared to other alternative thermoplastics tools.

For more information on the new EnduroSharp® offerings, please contact Rich Reed, Vice President of Sales and Marketing at [email protected], or visit our website at www.performanceplastics.com/endurosharp.

Correctly and efficiently performing aircraft maintenance requires the correct tools.  Patented EnduroSharp® Torlon® aircraft maintenance tools, exclusively from Performance Plastics, are the correct tools.  They are non-metallic scraper tools that quickly and effectively remove silicone, sealants, adhesives, and coatings while keeping an effective edge and not damaging underlying materials.

At the time of development, many nonmetallic scrapers were available and approved for various material removal applications. But, the effectiveness of the existing tools varied, and the tools were generally inefficient & short-lived. Some even pose a great risk to the underlying structures.

Under contract with the Air Force Research Laboratory’s Materials Integrity Branch (AFRL/RXSA), the University of Dayton Research Institute (UDRI) developed the EnduroSharp® line of Torlon® material removal tools.

After sampling available tools on the market for material and design, the material Torlon® by Solvay was chosen, along with a spiral-fluted design for the GFR Bit. Torlon® is a polyamide-imide (PAI) resin that is a high-end niche material that proved to be ideal for the application.  Initially, three types of tools were developed:

  • Gap Filler Removal Bits (GFR Bit)
  • Torlon Scraper Blade (TSB)
  • Torlon Gap Blade (TGB)

All three tools were extensively tested and summarized. It was concluded that Torlon® was indeed a great material for the application.  The material offered significantly less damage potential than other often-used tools.  It offered faster material removal rates and required less operator effort.  Additionally, the material proved to be resharpenable.

At the request of our users, EnduroSharp® is soon to release our new TSR Cutter, The Torlon Sealant Remover Cutter (TSR) is a rotary cutter designed to safely remove thick layers of sealants and adhesives from larger areas, such as fuel cells, without damaging the underlying coatings and surfaces.

The EnduroSharp® line is offered by over 100 organizations and is under evaluation for 11 weapons systems at 10 DoD locations.

For more information on the EnduroSharp® line of products, please contact Rich Reed, Vice President of Sales & Marketing at [email protected], or visit our website at www.performanceplastics.com.

 

Torlon is a high-performance polymer that is often used in precision industrial applications due to its exceptional mechanical and thermal properties. It is a brand name for polyamide-imide (PAI), a thermoplastic material that exhibits excellent strength, stiffness, and dimensional stability.

Here are some key characteristics and advantages of Torlon in precision industrial applications:

  1. High Strength and Stiffness: Torlon has a high strength-to-weight ratio and exceptional rigidity, making it suitable for applications that require structural integrity and resistance to deformation under heavy loads.
  2. Dimensional Stability: Torlon maintains its dimensional stability even under elevated temperatures, which is crucial in precision applications where tight tolerances and accurate fit are required. It has a low coefficient of thermal expansion, reducing the risk of dimensional changes due to temperature fluctuations.
  3. Chemical Resistance: Torlon is highly resistant to a wide range of chemicals, including acids, solvents, fuels, and oils. This chemical resistance makes it suitable for applications in chemical processing, oil and gas, and other industries where exposure to corrosive substances is a concern.
  4. High-Temperature Resistance: Torlon retains its mechanical properties at elevated temperatures, with a glass transition temperature (Tg) of approximately 280°C (536°F) and a melting point of around 310°C (590°F). This thermal stability allows it to perform reliably in high-temperature environments.
  5. Low Friction and Wear Resistance: Torlon exhibits excellent tribological properties, including low friction and wear resistance. This makes it suitable for applications that involve sliding or rotating components, such as bearings, bushings, and wear pads.
  6. Electrical Insulation: Torlon is an excellent electrical insulator, offering high dielectric strength and low electrical conductivity. It is often used in electrical and electronic components where insulation and electrical performance are critical.
  7. Machinability: Torlon is known for its machinability, allowing it to produce complex shapes and precise components. It can be easily machined using conventional machining techniques, including milling, turning, drilling, and grinding.

Due to its exceptional properties, Torlon is commonly found in industries such as aerospace, automotive, electronics, oil and gas, chemical processing, and various other high-performance applications that demand precision, reliability, and durability.

For more information on Torlon or how a high-performance polymers can benefit your application, please contact Rich Reed, Vice President of Sales and Marketing at [email protected] or visit our website at www.performanceplastics.com.

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® tools are made from Torlon®, a high strength polymer, creating a non-metallic tool that will not damage composite structures during use. The EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutters, bits, and discs for removal of adhesives on aircrafts. The product line also includes a variety of kits containing a selection of parts and sizes.

Traditionally, aerospace maintenance professionals removed sealants and adhesives from  gaps utilizing solvents and/or abrasive scraper tools.  Solvents are very dangerous in that they may dissolve unintended materials, and produce hazardous fumes.  Abrasive scraper tools are often hard to control and may cause unintended substrate damage.

EnduroSharp® Torlon® Gap Filler Removal (GFRD) Discs are designed for use with a pneumatic tool. The tools provide aerospace maintenance professionals with an effective method of safely removing flexibilized epoxy gap materials as well as cutting or scoring thick elastomeric coatings without damaging composite substructures.

EnduroSharp® Torlon® Gap Filler Removal (GFRD) Discs are shipped 4 parts per box.

The EnduroSharp® Torlon® Gap Filler Removal Discs are just one of the many different items offered in the EnduroSharp® product line. Contact Rich Reed our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected],  for more information on our EnduroSharp® kits and products.

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® resharpenable tools are made from Torlon®, a high strength polymer, creating a non-metallic blade tool that will not damage composite structures during use.

The lack of reliable and effective nonmetallic material removal tools available to maintainers drove the continued use of unapproved tools and/or methods for removing materials from aerospace vehicles. The use of metallic tools has resulted in damage to vehicles, both short term and long term, causing the need for expensive repairs and reduction in vehicle availability.

Because of this need, The University of Dayton Research Institute under contract to the Air Force Research Laboratory developed a series of nonmetallic material removal tools under the “EnduroSharp” trademark manufactured from Torlon thermoplastic manufactured by Solvay Engineered Plastics and produced by Performance Plastics of Cincinnati OH.

Attached is the published white paper outlining the development of the “EnduroSharp®” line of Torlon® non-metallic aircraft maintenance tools.  In this paper you will find:

  • Abstract
  • Background
  • Prototype Development Path
    • Gap Filler Removal Bits
    • Torlon Scraper Blades
    • Torlon Gap Blades
  • Results
  • Conclusions

To review the white paper in full, please click here.

EnduroSharp® Products are currently approved for use by numerous governmental and corporate defense organizations including the USAF, USMC, USN, USCG, Lockheed Martin, Boeing, and Dassault.

EnduroSharp® Products are now available as individual components, tools and consumables or as Aviation Kits.

For more information on the EnduroSharp® line or Torlon® Aircraft Maintenance Tools, please contact our Vice President of Sales and Marketing, at (513) 321-8404 or visit our website at www.performanceplastics.com/endurosharp.

 

 

EnduroSharp(R) Gap Blades & Adapter

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® resharpenable tools are made from Torlon®, a high strength polymer, creating a non-metallic blade tool that will not damage composite structures during use.

Scraper blades are designed for use in larger areas where a large quantity of material needs to be removed. Made from a non-marring Torlon® material the blades are a quick, safe and effective method of removing sealants and adhesives from composite structures.

Gap blades are designed for use in smaller grooves and channels where scraper blades are too large.  With a multi head edge, gap blades offer the ability to eliminate materials from multiple surfaces of the seam.

Technicians often use a scraper blade in applications where a gap blade will deliver a quicker, cleaner result.  While the scraper blade offers one cutting edge, the gap blades offer three, allowing the removal of sealants and adhesives from the surfaces more completely.                                                   

The tools are designed to complement each other.  By using an adapter tool, both the scraper blades and gap blades can be used with the same handle.  This provides the technician the ability to switch the blades based on the progression in the removal process.

Using the adapter also allows for the application of flexible incremental skiving techniques when removing sealants and adhesives.  Incremental skiving involves the technique of removing subsequent thin layers of material to achieve a cleaner finish.  The technician can switch back and forth between the blades as needed.

The EnduroSharp® scraper and gap blades are just a few of the many products offered in the EnduroSharp® Product line. Contact Rich Reed for our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected], more information on our EnduroSharp® kits and products.

 

 

 

 

 

 

 

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® tools are made from Torlon®, a high strength polymer, creating a non-metallic scraper tool that will not damage composite structures during use. The EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutter, bits, and discs for removal of adhesives on aircrafts. The product line even consists of kits containing all of the parts and sizes that you will need.

The EnduroSharp® Scraper Blade & Holder Kit is one of the most popular kits ordered. This kit includes the standard scraper blade holder, pocket scraper blade holder, and 2 scraper blades of each size. EnduroSharp® Torlon® Scraper Blade (TSB) inserts come in 5 different sizes, TSB-170, TSB-230, TSB-500, TSB-750, and TSB-1200. The blades slide and lock into the detent pin of the standard scraper blade holder handle, to easily alternate between the sizes as needed. This kit also contains the pocket scraper blade holder for use of the scraper blades in smaller areas.

The EnduroSharp® Scraper Blade & Holder kit is just one of the kits offered in the EnduroSharp® Product line. Contact Rich Reed for our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected], more information on our EnduroSharp® kits and products.

 

 

Look in any aircraft maintainer’s toolbox and you’re sure to find a few items that aren’t offered in any aviation supply catalog. You’ll probably find a sharpened putty knife, scribe, or utility blade that the maintainer uses to remove gap materials, sealants and adhesives from aircraft substrates and fasteners.

While these items may offer a short-term solution, there are two basic problems with these items.  One, they simply don’t work very well and require a lot of muscle (and time) to use. The second is that the ones made of metal greatly increase the risk of damaging many aircraft substrates.

What aircraft mechanics need for these jobs are tools that are hard enough to hold an edge and that can be re-sharpened readily, but which won’t damage the underlying surface. That’s why Performance Plastics partnered with high-performance polymer supplier Solvay Specialty Polymers, the Air Force Research Laboratory, Materials and Manufacturing Directorate, Systems Support Division (AFRL/RXS) and the University of Dayton Research Institute (UDRI) to develop the EnduroSharp® line of aircraft maintenance tools.

EnduroSharp™ aircraft maintenance tools are expertly designed and molded from a high-performance polymer, Torlon® polyamide-imide (PAI) resin. These tools prevent the kind of damage to metallic and nonmetallic components or substrates that improvised metal tools can cause.

EnduroSharp tools are approved for use on USAF, USMC, USN and other foreign military aerospace systems. They are well suited for removing elastomeric coatings, boots, tapes, sealants, adhesives, gap fillers and tape residue from fiber-reinforced composite, plastic, glass, ceramic or metal substrates and fasteners. To remove material faster, the blades can also be used with heat- or chemical-assisted skiving processes, in which materials are carefully removed one thin layer at a time.

For more information and to see our EnduroSharp® tools in action, please visit the EnduroSharp section of our website or watch our demo EnduroSharp Demo on YouTube.

Thermoplastic medical spinal implant component, precision thermoplastic medical check valve, non-contaminating Thermoplastic medical valve component, precision thermoplasticmedical spinal implant component, non-contaminating medical spinal implant component

High Precision, PEEK, Thermoplastic Medical Spinal Implant Component

As technology continues to advance, medical device designers are being asked to increase performance and longevity of devices while decreasing costs. One of the most effective methods of achieving both goals is through a metal-to-plastic conversion using a medically compatible resin.

Newer polymers allow for the design of multiple features into one molded component and can replace metal components or multiple smaller parts. By improving the product design and manufacturing process with the latest materials and plastic manufacturing techniques, medical device designers can improve performance of the medical device while reducing its cost.

Medical devices continue to get smaller and more complicated. The size and complexity issues present opportunities for metal-to-plastic conversion. Small tools often are used by professionals who are gloved, and resins offer the ability to apply texture and reduce weight. By using a material that provides improved wet-grip characteristics and ergonomics, designers are able to improve the overall functionality of products. The use of properly selected thermoplastic elastomers (TPEs) allows for products that withstand sterilization to be made more effectively.

Instruments that must be repeatedly cleaned and sterilized, sometimes multiple times a day such as dental instruments, can now be made from high-performance materials such as polyether imide (PEI), or polyetheretherketone (PEEK) polymers. These improvements result in better medical devices often at lower manufacturing costs.

Medical resins are ideal for bone implants. Devices made from PEEK polymer are a better match to the normal flexibility of a bone for implants. When a stainless-steel implant is used, the adhesion between the implant and bone tends to loosen over time, because the bone has a small amount of flexibility. A stainless-steel implant does not flex.

By using PEEK polymer as the implant stem, rather than traditional stainless steel, the polymer has close to the same flexibility as the bone and there is a reduced tendency for the implant to loosen over time. This compatibility between bone and polymer makes a more effective medical device — one that will allow better long-term outcomes, especially as the average life span of an implant increases in tandem with the life expectancy of the general population.

 

 

https://www.plasticstoday.com/medical/plastics-edge-over-metal-medical-device-fabrication