Design for Manufacturing (DFM) is a crucial aspect of the plastic injection molding process. It involves optimizing the design of a plastic part to ensure that it can be easily and cost-effectively manufactured using injection molding techniques. Here are some key considerations and guidelines for DFM in plastic injection molding:

Part Geometry and Complexity:

  • Keep the part geometry simple and avoid intricate features that could complicate the molding process or require complex tooling.
  • Minimize the use of undercuts, sharp corners, and thin walls to prevent molding defects and challenges in ejection.

Draft Angle:

  • Incorporate draft angles (tapered surfaces) on vertical walls to facilitate easy ejection of the part from the mold.
  • A typical draft angle is around 1-2 degrees per side, but this may vary based on the material and part design.

Wall Thickness:

  • Maintain uniform wall thickness throughout the part to ensure proper flow of molten plastic and reduce the risk of sink marks, warping, or voids.
  • Avoid sudden transitions between thick and thin sections, as this can lead to molding defects.

Ribs and Bosses:

  • Use ribs to reinforce thin sections of the part and add structural integrity.
  • Design bosses (protruding features) with appropriate wall thickness and draft angles to ensure good mold filling and easy part ejection.

Corners and Fillets:

  • Incorporate rounded corners and generous fillet radii to distribute stress and prevent stress concentrations that could lead to part failure.

Material Selection:

  • Choose a suitable plastic material for the intended application, considering factors such as mechanical properties, chemical resistance, temperature stability, and more.

Gating and Venting:

  • Position the gate (entry point for molten plastic) in a location that minimizes aesthetic defects and ensures uniform filling.
  • Provide adequate venting to allow air and gases to escape during injection, preventing voids and trapped air.

Texture and Surface Finish:

  • Consider the desired texture or surface finish early in the design process, as this may impact mold design and material flow.
  • Textures can help hide imperfections and improve aesthetics.

Tolerances:

  • Specify realistic tolerances that are achievable through the injection molding process.
  • Avoid tight tolerances that could increase manufacturing costs and lead to rejects.

Moldability Analysis:

  • Conduct mold flow analysis using simulation software to identify potential issues and optimize the part design before production.
  • Address potential concerns such as weld lines, air traps, and flow imbalances.

Tooling Considerations:

  • Collaborate closely with the tooling manufacturer to ensure the mold design aligns with the part design and material properties.
  • Optimize the number and complexity of mold cavities based on production volume requirements.

Assembly and Post-Processing:

  • Design parts for easy assembly by incorporating features like snap fits, self-locating tabs, and mating surfaces.
  • Minimize the need for secondary operations or post-processing steps.

By following these design principles and collaborating with experienced injection molding professionals like Performance Plastics, you can create plastic parts that are well-suited for efficient and cost-effective manufacturing through the injection molding process.

For more information on Design for Manufacturing and its use, please contact Rich Reed, Vice President of Sales & Marketing at [email protected], or visit our website at www.performanceplastics.c

A Mold flow analysis is a software simulation that can show how resin will fill the mold during the injection molding process. By understanding material fill, injection mold designers can better position gates, anticipate where knit lines will appear, and locate difficult-to-fill spots in the mold.

The predictive process of mold flow analysis can uncover design issues, save resources, allow for preemptive correction, speed up overall cycle time, and present your business with an abundance of benefits. Mold flow analysis is essential to ensure that a mold can produce the strongest and most consistent parts.

Here are our top six reasons why you should always perform a mold flow analysis:

  1. Optimization of Design

Without the investment of tooling or molding, all the what-if questions can be addressed ahead of time. Mold flow analysis can point out many concerns or production factors, including:

  • Material selection issues
  • Thickness/thinness problems
  • Structural concerns
  • Residual or structural stress issues
  • Filling concerns
  1. Quick & Immediate Decisions

With mold flow analyses, you can make immediate, informed decisions. These decisions can impact multiple areas of the process including:

  • Product design
  • Material and process selection
  • Tooling
  1. Optimization of Injection Molds and Tooling

You will have all the information upfront to make the most optimal choices in injection molds and tooling to create the perfect product. Mold flow analysis can show you everything you need:

  • The optimal gate locations
  • Balanced filling and packing
  • Cavity layout
  • The best cooling layouts
  • Structural and thermal analyses for tool life
  1. Trying Different Materials

You’re able to test out different materials and designs without building any prototype parts or tools. You can get virtual parts with a simulation as well, so you can have a full process simulation with minimal upfront investment.

  1. Optimize Overall Cycle Time

Mold flow analyses can optimize your overall cycle time by up to 10-30%. That reduction percentage on just one part can cancel out the cost of a complete flow analysis of multiple molded parts!

  1. Specification

Plastic parts can be optimized for exact machine specification, cycle time, cooling, DOE, and more, without reducing production time or putting any tools on molding machines; this can help improve your bottom-line profit.

The predictive process of mold flow analysis can uncover design issues, save resources, provide for preemptive correction, speed up overall cycle time, and present your business with an abundance of benefits.

Performance Plastics provides mold flow analysis to help your business improve manufacturing processes by saving time and money. For more information on how mold flow analysis can provide simplicity and quality to products, please contact Rich Reed, Vice President of Sales & Marketing at [email protected], or visit our website at www.performanceplastics.com.

 

Family_Mold

A family mold is a mold that produces different parts using the same base.  There can be multiple cavities for different part numbers.  Family molds often have a building cost advantage over molds dedicated to a single part number.

A common usage is to combine two halves of housing into a family mold. Halves are purchased in sets which makes running them together a good option.  They don’t have to be run together, so a shut-off runner must be included which allows one or more cavities to be turned off during production.

Family molds are often more practical than dedicated molds with moderate production volumes, whereas dedicated multiple cavities would be more expensive.  But family mold layout design is demanding and requires experience when dealing with advanced materials.

There are big differences between the properties, processing methods, and applications of various advanced materials.  Engineers need to understand the properties of the materials when using a family mold.  All advanced materials have benefits and deficiencies, so this understanding is key to the success of a project.

The conditions encountered when forcing molten plastic through a mold’s sprues, runners, and gate change as the mold becomes larger, and more complex, which impacts the molding process and material quality.  Thermal variations within a family mold become more of a concern, increasing the risk of partially filled cavities as well as part deformation.

Performance Plastics are experts in precision injection molding.  We have developed proprietary tooling, unique metallurgy equipment, and processes that produce custom-molded plastics such as fluoropolymers, Ultem®, PEEK, and Torlon®.  We leverage our high-performance polymer expertise and technology to develop thermoplastic compounds and techniques to maximize your family mold and provide the best quality on your mold investment.

For more information on family molds and how they can benefit your application, please contact Rich Reed, Vice President of Sales & Marketing at [email protected] or visit our website at www.performanceplastics.com.

 

Strong, lightweight plastics enable us to live better while contributing to sustainability in many ways—all which stem from plastics’ ability to help us do more with less.

Plastics help us protect the environment by reducing waste, lowering greenhouse gas emissions, and saving energy at home, at work, and on the road. Plastic packaging helps to dramatically extend the shelf life of products while allowing us to ship more with less packaging material—reducing both product and packaging waste.

Plastics have a great environmental profile.  Only 4% of the world’s oil production is used for plastics and it takes much less energy to produce compared to other materials.  Plastics are durable, lightweight, and adaptable, now being used in projects that used to require metal materials.

Plastic adhesives, sealants, tools, and other building products are making our lives significantly more energy efficient while reducing costs. Plastics are building blocks of many value chains including healthcare, aviation, packaging, and increasingly the recycling industry. Sustainable plastic manufacturing conducts business in a way that drives value for society, the environment, and industry.

High-Performance plastics offer superior product quality in terms of durability, reusability, and recyclable quantities.  They are used in a wide range of multi-use applications and durable applications and are frequently used to replace other materials such as metal, wood, and glass.

 

 

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners.

After receiving feedback from aircraft professionals,  EnduroSharp® has combined two of our most popular kits into one consolidated kit.  This kit offers the full selection of the EnduroSharp® gap blades, and EnduroSharp® scraper blades, packaged in one convenient carrying case.  We even included the sharper in the kit, so our maintainers would have all the tools they need in one handy case!

Traditionally, aerospace maintainers removed adhesives and sealants using tools that weren’t designed for the job.  Patented EnduroSharp® Torlon® aircraft maintenance tools were specifically designed for this task.  EnduroSharp® Tools are non-metallic scraper tools designed specifically to remove silicone, sealants, adhesives, and coatings.

Performance Plastics is a custom precision injection molder of high-performance, tight-tolerance thermoplastic components. We specialize in geometrically complex precision parts that consist of chemically inert materials. Our expertise led to the development of our patented EnduroSharp® line of Aircraft Maintenance Tools.

For more information on the new EnduroSharp® Gap Blade & Scraper Blade kit, or any of our EnduroSharp® product lines, please contact Aileen Crass at [email protected] or visit our website at www.performanceplastics.com.

 

 

A high-performance plastic is a resin that exhibits characteristics that make it a viable alternative to metals for use in industrial applications.  Characteristics include strength & durability, temperature resistance, electrical properties, lightweight, and versatility.  Overall, high-performance plastics can be custom designed to meet specific performance criteria and offer a wide range of benefits.

A gasket is a mechanical seal that fills the space between two or more mating surfaces to prevent leakage from or into joined objects under compression.  They extend the lifespan of moving parts by protecting against rubbing or friction.  Today, high-performance plastic gaskets are used as an alternative to metal gaskets as they offer great durability and corrosion resistance.  They are also lightweight, have low friction, and have good sealing and insulation properties.

The benefits of using a gasket made of high-performance plastics include:

  • Improved functionality and performance
  • Improved resistance to many chemicals
  • Improvement in vibration
  • Improved handling of temperature fluctuation
  • Improved impact resistance

High-performance plastic gaskets can be custom designed to meet specific performance criteria and offer a wide range of benefits depending on the application.

Performance Plastics has over 40 years’ experience in molding tight tolerance advanced plastics such as Fluoropolymers (FEP/PFA) Torlon, PEEK & Ultem for many industries.  We have developed proprietary processes enabling injection molding of parts that are thin walled, with tight dimensional tolerances and complex geometries.

For more information on high-performance plastic gaskets or other Performance Plastics’ services, please contact Rich Reed, Vice President of Sales & Marketing at 440-785-7122.

 

Plastics can be considered high-performance for a variety of reasons.  The specific application and the performance criteria are the most important.  Here are some characteristics that can contribute to a resin being classified as a high-performance plastic.

  1. Strength and durability: Many plastics are engineered (fiber reinforced) to be extremely strong and durable, with high tensile strength and resistance to wear, tear, and impact. This can make them well-suited for applications where mechanical stress is a concern. Examples include Torlon PAI and PEEK.
  2. Temperature resistance: Certain plastics are highly resistant to chemical corrosion or degradation, which can make them ideal for use in harsh environments or with corrosive substances. Examples include fluoropolymers such as PFA with a melting point of 581 degrees F.
  3. Electrical properties: Some plastics have excellent electrical insulation properties, making them ideal for use in electronics or other electrical applications. Examples include fluoropolymers such as FEP.
  4. Lightweight: Many plastics are lightweight, which can make them ideal for applications where weight is a concern, such as the aerospace, medical, or industrial markets.
  5. Versatility: Plastics can be easily injection molded into a wide variety of complex shapes and sizes, which can make them versatile and useful in a wide range of applications.

Overall, high-performance plastics can be custom designed to meet specific performance criteria and offer a wide range of benefits depending on the application.

For more information on high-performance plastics or other Performance Plastics services, please contact Rich Reed, Vice President of Sales & Marketing at [email protected] or call 440-785-7122.

 

Now Offered With and Without the Case

With Case ESNAT 1C
Without Case ESNAT 1NC

 

 

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners.

Adhesively bonded nutplates are increasingly being utilized in the manufacture of aerospace structures, with extensive use in securing removable maintenance access panels.

Traditionally, aerospace maintenance professionals prepared nutplates using manual methods such as abrading files or grinders.  This proved very inefficient because the abrading was often uneven, leading to adhesively bonded nutplate failure.  While rotary abrasion tools (RATs) were better, they were often bulky and expensive.

That’s why EnduroSharp® developed the Nutplate Abrasion Tool (NAT).   Precisely designed to work with adhesively bonded nutplates, the product consists of an aluminum upper and lower handle and 4 nutplate base inserts.  The product is packaged in a convenient, rugged case which is handy for transporting.

Performance Plastics is a custom precision injection molder of high-performance, tight-tolerance thermoplastic components. We specialize in geometrically complex precision parts that consist of chemically inert materials. Our expertise led to the development of our patented EnduroSharp® line of Aircraft Maintenance Tools.

For more information on the EnduroSharp® Nutplate Abrasion Tool or any of our EnduroSharp® product lines, please contact Aileen Crass at [email protected] or visit our website at www.performanceplastics.com.

A cleanroom is a controlled environment where products are manufactured and assembled in a dust-free, temperature-controlled environment. They are designed specifically to reduce the risk of contamination and minimize the potential for product defects. Cleanrooms are becoming increasingly important in the manufacturing industry as they are used in the production of a wide range of products, from microelectronics to medical devices.

Performance Plastics utilizes robotics in its clean room to offer customers the best of both technologies. Automation offers solutions to the four Ds in manufacturing, dirt, danger, dullness, and difficulty.
The primary objective of a cleanroom is to maintain a dust-free environment with minimal airborne particulate matter. To do this, cleanrooms are equipped with special filters and air-handling systems that remove and trap dust particles.

The primary objective of robotics is to maintain quality and consistency during the production of a product. Robots produce more accurate and high-quality work. Robots rarely make a mistake and are more precise. They can produce larger quantities in the same amount of time. They work at a consistent, sustainable speed.

In addition to controlling the environment, cleanrooms are also equipped with advanced temperature control systems. This ensures that the temperature and humidity levels remain consistent, which is important for the proper functioning of the products being manufactured.

Cleanrooms also help to reduce the risk of contamination. Products are kept in a sterile environment and are subject to rigorous cleaning protocols. This helps to ensure that the products are free from any potential contaminants.
For more information as to how Performance Plastics can provide you with a manufactured clean room solution, please visit our website at www.performanceplastics or contact Rich Reed, Vice President of Sales and Marketing at [email protected].

A fluoropolymer is one of the growing numbers fluorocarbon-based polymers. They are widely used in healthcare applications due to their biocompatibility, lubricity, sterilizability, chemical inertness, thermal stability, barrier properties, and high purity. However, when compared with other resins, they are significantly more expensive and require special techniques to injection mold due to their shear sensitivity, high melt temperatures, and fluorine outgassing when melted.

Although the best-known fluoropolymer, polytetrafluoroethylene (PTFE or Teflon®), has been on the market since the 1940s, newer resins have been developed to address specific injection molding niches. Perfluoroalkoxy polymer (PFA) and fluorinated ethylene-propylene (FEP plastic) are among the most recent additions to the list of fluoropolymer options.

PFA was developed in order to create a true melt-processable fluoropolymer. It provides the smoothest and least wettable finish of all of the fluoropolymers. Its optical transparency, chemical inertness, and overall flexibility have made it popular for use in lab equipment. It also has superior electrical properties, with dielectric strength that’s three to four times greater than PTFE can offer.

Like PFA, FEP is melt-processable and injection moldable. Its melting point of 260 °C (500 °F) is about 40 degrees lower than PFA’s.  It offers low friction and chemical inertness properties comparable to PTFE’s. However, it is completely transparent. Because FEP is highly resistant to sunlight, it is especially useful for molding parts that are subjected to weathering.

However, not all injection molders are equipped to work with fluoropolymers like PFA and FEP. Performance Plastics LTD. has developed a variety of tools and procedures to address the challenges involved in molding these materials. For example, our solution includes a hot runner system and mold designed to minimize the shear forces inherent in the injection molding process. We use proprietary metallurgy that’s highly resistant to fluorine gas corrosion, which helps extend the working life of the hot runner system, tooling and other components that make contact with the melted resin. We’ve also developed a direct-gating, multi-runner approach to tool design that eliminates the sprue and runner used in traditional injection molding. By eliminating the wasted material associated with the sprue and runner, Performance Plastics has been able to pass along material cost savings of from 20% to 40% by using these expensive resins more economically.

To learn more about how we can cut your resin costs while helping you take advantage of the unique properties PFA and FEP offer, visit our contact page or contact Rich Reed, our vice president of sales and marketing, at (513) 321-8404 or [email protected].