Torlon is a high-performance polymer that is often used in precision industrial applications due to its exceptional mechanical and thermal properties. It is a brand name for polyamide-imide (PAI), a thermoplastic material that exhibits excellent strength, stiffness, and dimensional stability.

Here are some key characteristics and advantages of Torlon in precision industrial applications:

  1. High Strength and Stiffness: Torlon has a high strength-to-weight ratio and exceptional rigidity, making it suitable for applications that require structural integrity and resistance to deformation under heavy loads.
  2. Dimensional Stability: Torlon maintains its dimensional stability even under elevated temperatures, which is crucial in precision applications where tight tolerances and accurate fit are required. It has a low coefficient of thermal expansion, reducing the risk of dimensional changes due to temperature fluctuations.
  3. Chemical Resistance: Torlon is highly resistant to a wide range of chemicals, including acids, solvents, fuels, and oils. This chemical resistance makes it suitable for applications in chemical processing, oil and gas, and other industries where exposure to corrosive substances is a concern.
  4. High-Temperature Resistance: Torlon retains its mechanical properties at elevated temperatures, with a glass transition temperature (Tg) of approximately 280°C (536°F) and a melting point of around 310°C (590°F). This thermal stability allows it to perform reliably in high-temperature environments.
  5. Low Friction and Wear Resistance: Torlon exhibits excellent tribological properties, including low friction and wear resistance. This makes it suitable for applications that involve sliding or rotating components, such as bearings, bushings, and wear pads.
  6. Electrical Insulation: Torlon is an excellent electrical insulator, offering high dielectric strength and low electrical conductivity. It is often used in electrical and electronic components where insulation and electrical performance are critical.
  7. Machinability: Torlon is known for its machinability, allowing it to produce complex shapes and precise components. It can be easily machined using conventional machining techniques, including milling, turning, drilling, and grinding.

Due to its exceptional properties, Torlon is commonly found in industries such as aerospace, automotive, electronics, oil and gas, chemical processing, and various other high-performance applications that demand precision, reliability, and durability.

For more information on Torlon or how a high-performance polymers can benefit your application, please contact Rich Reed, Vice President of Sales and Marketing at rreed@performanceplastics.com or visit our website at www.performanceplastics.com.

When using a tool for maintenance, it is important to use the right tool to perform the task the right way.  Using the incorrect tool wastes time, reduces efficiency, and puts the maintainer at risk of injury. Take for example a tool as basic as a scraper blade.  Not all scraper blades are made of the same material and provide the same functionality.  Some of the most common types of scraper blades on the market include Phenolic, Celcon®, Glass Filled Nylon, and Torlon®.

 

Phenolic Scraper Blades

Phenolic scraper blades come in assorted shapes, colors, and sizes.  Phenolic scrapers are commonly used for removing sealants, adhesives, stickers, labels, grime, and more.  Phenolic materials are the result of polymerization between layers of paper, canvas, linen, or glass cloth impregnated with a synthetic thermosetting resin.  It offers high resistance to flexing but does not offer the ability to be resharpened.  It will curl, peel and melt when attempting to resharpen.  Additionally, Phenolic may cause irritation to the skin, eyes, nose throat, and nervous system, so it is not ideal for use in incremental or heated material removal.

 

Celcon® Plastic Scraper Blades

Celcon® plastic scraper blades are currently approved by several MROs and are made of semi-crystalline thermoplastics that offer high tensile strength, stiffness, and toughness and may retain a sharp edge.  They are resistant to hot water and some solvents and are useful for sealant application, removal, and paint removal.  They are not, however, useful with newer aviation adhesives, or high-heat applications as they melt easily.  Celcon® dust may cause irritation in the upper respiratory tract when used at normal processing temperatures.

 

 

Glass-Filled NylonScraperBlades

Glass-filled nylon scraper blades are thermal polymers that hold a very sharp and hard edge.  It is far less likely to mar surfaces, but it is not categorized as non-marring.  Can sometimes often be reshaped, but edges tend to wear when prying.  Can not be re-sharpened. Resists chemicals and solvents with minimal degradation.  While adding glass to the nylon makes it substantially stronger, with superior tensile strength it is also substantially more brittle, abrasive, and heavier.

 

Torlon Scarper Blades

Torlon® scraper blades hold a superior edge, remove unwanted materials, and protect the underlying substrates.  Torlon® is a non-marring, high-strength, high-temperature polymer and is cured to produce a thermoset polymer.  As a thermoset, it is resharpenable, lightweight, chemically resistant, and safe for people under normal conditions.

EnduroSharp® offers a full line of Torlon® Aircraft Maintenance Tools that make the removal of sealants and adhesives more efficient.

For more information on the new EnduroSharp® Gap Blade & Scraper Blade kit, or any of our EnduroSharp® product lines, please contact Aileen Crass at acrass@performanceplastics.com or visit our website at www.performanceplastics.com/endurosharp.

 

 

 

Strong, lightweight plastics enable us to live better while contributing to sustainability in many ways—all which stem from plastics’ ability to help us do more with less.

Plastics help us protect the environment by reducing waste, lowering greenhouse gas emissions, and saving energy at home, at work, and on the road. Plastic packaging helps to dramatically extend the shelf life of products while allowing us to ship more with less packaging material—reducing both product and packaging waste.

Plastics have a great environmental profile.  Only 4% of the world’s oil production is used for plastics and it takes much less energy to produce compared to other materials.  Plastics are durable, lightweight, and adaptable, now being used in projects that used to require metal materials.

Plastic adhesives, sealants, tools, and other building products are making our lives significantly more energy efficient while reducing costs. Plastics are building blocks of many value chains including healthcare, aviation, packaging, and increasingly the recycling industry. Sustainable plastic manufacturing conducts business in a way that drives value for society, the environment, and industry.

High-Performance plastics offer superior product quality in terms of durability, reusability, and recyclable quantities.  They are used in a wide range of multi-use applications and durable applications and are frequently used to replace other materials such as metal, wood, and glass.

 

 

A high-performance plastic is a resin that exhibits characteristics that make it a viable alternative to metals for use in industrial applications.  Characteristics include strength & durability, temperature resistance, electrical properties, lightweight, and versatility.  Overall, high-performance plastics can be custom designed to meet specific performance criteria and offer a wide range of benefits.

A gasket is a mechanical seal that fills the space between two or more mating surfaces to prevent leakage from or into joined objects under compression.  They extend the lifespan of moving parts by protecting against rubbing or friction.  Today, high-performance plastic gaskets are used as an alternative to metal gaskets as they offer great durability and corrosion resistance.  They are also lightweight, have low friction, and have good sealing and insulation properties.

The benefits of using a gasket made of high-performance plastics include:

  • Improved functionality and performance
  • Improved resistance to many chemicals
  • Improvement in vibration
  • Improved handling of temperature fluctuation
  • Improved impact resistance

High-performance plastic gaskets can be custom designed to meet specific performance criteria and offer a wide range of benefits depending on the application.

Performance Plastics has over 40 years’ experience in molding tight tolerance advanced plastics such as Fluoropolymers (FEP/PFA) Torlon, PEEK & Ultem for many industries.  We have developed proprietary processes enabling injection molding of parts that are thin walled, with tight dimensional tolerances and complex geometries.

For more information on high-performance plastic gaskets or other Performance Plastics’ services, please contact Rich Reed, Vice President of Sales & Marketing at 440-785-7122.

 

Gaskets, seals, and poppets are key components of industrial applications used to seal joints, limit vibration, and prevent leaks.  They serve critical functions, so it is essential to choose the correct material for the application.  Performance Plastics has a thorough understanding of high-performance thermoplastics including PEEK, PFA, FEP, Torlon, and Ultem to create reliable, better sealing, longer wearing, and more cost-efficient components.

When choosing a material, there are several factors to keep in mind to ensure the material is correct for the application.

  • Temperature – material must withstand the entire design temperature range.
  • Pressure – material must withstand the entire pressure range.
  • Corrosion Resistance – material should not corrode when it encounters fluids or by environmental exposure.
  • Product Standards
  • Industry Standards

The materials need to have good flexibility, low density, and high tensile strength.  It also needs to have resistance to chemicals, internal pressure, durability, and adhesion with itself and the surfaces they touch.

It is important to understand the requirements of the particular application before making a material selection.  Our CT scanning metrology service allows us to offer the best in advanced measurement science.  Gaskets, seals, and poppets must be measured to deliver and maintain their seals for an acceptable period against all the operational forces present.

Performance Plastics’ team of experienced engineers possess the expertise to design and manufacture technically challenging projects and offer complex solutions within any industry. With the ability to hold tight tolerances (+/- .001”) in injection molding operations, we are exceptionally well-equipped to serve the Oil & Gas, Fluid Management, and HVAC industries.

For more information on how Performance Plastics can assist in your material selection challenges, please contact Rich Reed, VP of Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com

 

Plastics can be considered high-performance for a variety of reasons.  The specific application and the performance criteria are the most important.  Here are some characteristics that can contribute to a resin being classified as a high-performance plastic.

  1. Strength and durability: Many plastics are engineered (fiber reinforced) to be extremely strong and durable, with high tensile strength and resistance to wear, tear, and impact. This can make them well-suited for applications where mechanical stress is a concern. Examples include Torlon PAI and PEEK.
  2. Temperature resistance: Certain plastics are highly resistant to chemical corrosion or degradation, which can make them ideal for use in harsh environments or with corrosive substances. Examples include fluoropolymers such as PFA with a melting point of 581 degrees F.
  3. Electrical properties: Some plastics have excellent electrical insulation properties, making them ideal for use in electronics or other electrical applications. Examples include fluoropolymers such as FEP.
  4. Lightweight: Many plastics are lightweight, which can make them ideal for applications where weight is a concern, such as the aerospace, medical, or industrial markets.
  5. Versatility: Plastics can be easily injection molded into a wide variety of complex shapes and sizes, which can make them versatile and useful in a wide range of applications.

Overall, high-performance plastics can be custom designed to meet specific performance criteria and offer a wide range of benefits depending on the application.

For more information on high-performance plastics or other Performance Plastics services, please contact Rich Reed, Vice President of Sales & Marketing at rreed@performanceplastics.com or call 440-785-7122.

 

PEEK is short for polyether ether ketone. These polymers are notable for their phenylene rings and oxygen bridges, which result in resilience, durability, and strength.

Wafer manufacturing is a term used to describe the process of creating chips, otherwise known as integrated circuits, which are used in everyday devices.  You will find chips in everything from cars to military jets.  PEEK is great for semiconductor applications because of its outstanding combination of physical properties.

  • Longer Lifetime – CMP (chemical-mechanical positioning) rings made with PEEK can provide less downtime, and more throughput with up 2x wear resistance compared to other materials.
  • Potential Yield Enhancement – Low particle generation and higher purity, resulting in lower outgassing and extractives that may lead to yield improvements
  • Faster Process – PEEK endures proceseess with up to 260° and harsh chemicals, which allos for faster processing and less cooling time.

Semiconductor equipment manufacturers use PEEK screws and fasteners in wet benches. Chip manufacturers use hydrofluoric acid which is a corrosive chemical that can damage metals. Since PEEK is chemical-resistant, chip manufacturers are utilizing PEEK screws. These screws are used in the production of ICU’s since they are a high-purity material and possess low-outgas properties. PEEK is also used to manufacture manifolds for semiconductor production equipment.

Performance Plastics’ team of experienced engineers possess the expertise to design and manufacture technically challenging projects and offer complex solutions within the semiconductor industry.

For more information on how Performance Plastics can assist in your material selection challenges, please contact Rich Reed, VP Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com.

 

https://youtu.be/XRmbryDk6WQ

Nylon® is a synthetic thermoplastic polyamide that is known for its strength, temperature resilience, and chemical compatibility. It has been proven to be a lightweight, heavy-duty industrial engineering plastic replacement for metals that are resistant to both heat and corrosive chemicals.

Nylon® is a great material for parts that undergo flexure and bending.  With wear resistance far greater than many metals and other thermoplastics and a low coefficient of friction, Nylon® is ideally suited for use in slides, bearings, and other parts that need to stand up to high levels of motion and wear. Performance Plastics offers expertise in developing Nylon® resin formulations and combinations with other polymers such as glass, carbon, and mineral-reinforced versions.  For example, Minlon®, a mineral-reinforced Nylon® provides greater dimensional stability and creep resistance than unreinforced Nylon®, and lower warpage than glass-reinforced Nylon®. As a result, it is popular for use in compressor valves and big industrial parts, as well as in demanding aerospace applications.

Performance Plastics has seen Nylon®’s applications grow to include a range of applications to move water, acids, lubricants, solvents, chemicals, and fuels in automotive, military, and aerospace environments.  Although pump makers traditionally used various metals for pump housings, shaft guides, impellers, seals, bushings, and other elements, the desire to reduce pump weight, material, and processing costs have led many to opt for various Nylon® formulations instead. Performance Plastics can use Nylon® to offer a combination of physical strength, wear resistance, self-lubrication, and high cost-effectiveness.

Choosing the optimal Nylon® resin for an application depends on several factors, including the levels of pressure, temperature, and speed involved. In addition, the abrasiveness of the liquids or slurries involved, the degree of contamination that can be tolerated, and projected uses for the part must also be considered.

Nylon®’s toughness and elongation properties make it suitable for designs that involve snap-fits or press-fits. Injection-molded Nylon® parts from Performance Plastics are well-suited to secondary machining processes such as turning, drilling, tapping, and grinding, as well as ultrasonic insertion, ultrasonic welding, pad printing, and assembly.

To discover how Performance Plastics is partnering with world-class polymer scientists and industry-leading material suppliers to deliver nylon solutions, visit our website at https://performanceplastics.com or contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

When it comes to extremely high-temperature applications, engineered fluoropolymers are an optimal choice for reliability and performance. While there are several engineered resins available on the market, for the most demanding applications, project leaders often request Vespel® or Torlon®. Understanding the differences between these two resins, the production methods involved and the labor costs associated with the materials will help you determine which one is correct for your project.

Vespel® vs. Torlon®

Vespel® is a polyimide plastic that is often used in high-heat environments that cause thermoplastic materials to lose their mechanical properties. It is one of the most dynamic engineering resins available and can be found in hostile and extreme environments, such as oil & gas, semiconductors, and aerospace applications.

With the ability to perform at temperatures of 500ºF and to endure temperatures up to 900ºF for limited periods, Vespel® has superior thermal stability. This material is also known for excellent friction and wear characteristics, being extremely creep resistant, and having a high resistance to chemicals. Vespel® is a lightweight alternative to metal, offering high tensile (8,750 psi) and flexural (16,000 psi) strength at one-half the weight of metal.

Characteristics of Vespel® include:

• High impact resistance
• Extremely high purity
• Minimal electrical and thermal conductivity
• Low water absorption
• Radiation resistance

Torlon® is a high-performance engineered thermoplastic that is difficult to injection mold, can readily hold tight tolerances, and is easy to machine. This polyamide-imide plastic offers exceptional toughness, even when operating in continuous temperatures of 500ºF. It excels in chemically harsh environments and is stronger at 400°F than most engineering resins at room temperature. Torlon® parts are commonly used in aerospace, chemical processing, and bearings.

Torlon® features:

• High dimensional stability
• Low creep
• High thermal endurance
• Tensile strength of 27,847 psi
• Flexural strength of 35,390 psi

Injection Molding is Our Specialty

Whether your application needs extreme thermal resistance, purity, thermal conductivity or exceptional toughness, our expert staff can assist in the material selection that will hold tight tolerances and meet all your production specifications.
We have developed proprietary molding and tooling processes enabling the injection molding of otherwise complex parts. Our expertise in fluoropolymers and injection molding can assist you in selecting the correct material for your application.

For more information on Vespel® or Torlon® please contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

A fluoropolymer is one of the growing numbers fluorocarbon-based polymers. They are widely used in healthcare applications due to their biocompatibility, lubricity, sterilizability, chemical inertness, thermal stability, barrier properties, and high purity. However, when compared with other resins, they are significantly more expensive and require special techniques to injection mold due to their shear sensitivity, high melt temperatures, and fluorine outgassing when melted.

Although the best-known fluoropolymer, polytetrafluoroethylene (PTFE or Teflon®), has been on the market since the 1940s, newer resins have been developed to address specific injection molding niches. Perfluoroalkoxy polymer (PFA) and fluorinated ethylene-propylene (FEP plastic) are among the most recent additions to the list of fluoropolymer options.

PFA was developed in order to create a true melt-processable fluoropolymer. It provides the smoothest and least wettable finish of all of the fluoropolymers. Its optical transparency, chemical inertness, and overall flexibility have made it popular for use in lab equipment. It also has superior electrical properties, with dielectric strength that’s three to four times greater than PTFE can offer.

Like PFA, FEP is melt-processable and injection moldable. Its melting point of 260 °C (500 °F) is about 40 degrees lower than PFA’s.  It offers low friction and chemical inertness properties comparable to PTFE’s. However, it is completely transparent. Because FEP is highly resistant to sunlight, it is especially useful for molding parts that are subjected to weathering.

However, not all injection molders are equipped to work with fluoropolymers like PFA and FEP. Performance Plastics LTD. has developed a variety of tools and procedures to address the challenges involved in molding these materials. For example, our solution includes a hot runner system and mold designed to minimize the shear forces inherent in the injection molding process. We use proprietary metallurgy that’s highly resistant to fluorine gas corrosion, which helps extend the working life of the hot runner system, tooling and other components that make contact with the melted resin. We’ve also developed a direct-gating, multi-runner approach to tool design that eliminates the sprue and runner used in traditional injection molding. By eliminating the wasted material associated with the sprue and runner, Performance Plastics has been able to pass along material cost savings of from 20% to 40% by using these expensive resins more economically.

To learn more about how we can cut your resin costs while helping you take advantage of the unique properties PFA and FEP offer, visit our contact page or contact Rich Reed, our vice president of sales and marketing, at (513) 321-8404 or RReed@performanceplastics.com.