Performance Plastics is pleased to announce two additions to its EnduroSharp® line of aircraft maintenance tools: the EnduroSharp® Torlon® Sealant Remover (TSR) and three new EnduroSharp® Adhesive Reamers (TAR).

The EnduroSharp® Torlon Sealant Removers (TSR) are non-metallic, spiral single-fluted cutters designed to remove non-metallic debris such as cured sealants and adhesives from larger surface areas such as fuel tanks.

Designed for use with a power drill, the cutters have a hex drive mounting feature and are reusable because they are made of a re-sharpenable material called Torlon®. The cutters were designed to remove sealants, filers, and coatings cleanly with no abrasion to the underlying paints, primers, or metal substrates.

The EnduroSharp® Torlon® Adhesive Reamers (TAR) are non-metallic, multi-fluted, straight-walled reamers. They can be used to remove debris such as cured sealants and adhesives from fastening and bushing holes in metallic or composite structures without damaging the structures. Originally offered in nine sizes, we have added three new sizes to the lineup: the TAR 171 (0.171” Diameter, Straight Fluted, ¼ Inch Hex Drive), TAR 234 (0.234” Diameter, Straight Fluted, ¼ inch Hex Drive), and TAR 296 (0.296” Diameter, Straight Fluted, ¼ inch Hex Drive).

Performance Plastics developed all EnduroSharp® Aircraft Maintenance Tools in conjunction with the University of Dayton Research Institute (UDRI), and the Air Force Research Laboratory (AFRL) to provide reliable and dependable material removal tools for military and commercial aircraft maintainers.

Approved for use by the USAF, USMC, USN, and many foreign military organizations, EnduroSharp® tools are designed to prevent damage to metallic and non-metallic components such as composites, metals, and fiberglass. The EnduroSharp® tools are stiffer and maintain a superior cutting edge compared to other alternative thermoplastics tools.

For more information on the new EnduroSharp® offerings, please contact Rich Reed, Vice President of Sales and Marketing at [email protected], or visit our website at

As you’re designing and manufacturing your next project, wouldn’t it be ideal if you could analyze all the existing parts, compare them to the original drawings, and get results quickly, without damage? At Performance Plastics, we have the ability to do this through industrial computed tomography (CT) scans. This gives us the ability to measure all aspects of your part, without having to damage it.

Performance Plastics specializes in tight tolerance, high-performance polymers such as Peek, Torlon, FEP & PFA, and Ultem.  We leverage CT Industrial scanning to replicate parts made of other materials and improve their performance.

Industrial computed tomography (CT) scanning is a non-destructive testing (NDT) method that uses X-ray technology to produce detailed 3D images of the internal structure of objects. This technology is widely used across various industries due to its numerous benefits. Here are some key advantages of industrial CT scanning:

  1. Non-Destructive Testing (NDT): One of the primary benefits of industrial CT scanning is that it allows for non-destructive testing of objects. This means that the internal structures of components or products can be examined without causing any damage to the tested item. This is particularly important in industries where preserving the integrity of the object is crucial.
  2. High Resolution and Accuracy: Industrial CT scanners can produce high-resolution images with fine details, allowing for precise analysis of internal structures. This level of accuracy is especially valuable in industries where the quality and precision of components are critical, such as aerospace and automotive.
  3. Visualization of Internal Structures: CT scanning provides a three-dimensional visualization of the internal features of an object. This is particularly useful for inspecting complex geometries, assemblies, and multi-material components, allowing engineers and researchers to examine the internal structures in a comprehensive manner.
  4. Identification of Defects and Anomalies: Industrial CT scanning is highly effective in identifying defects, voids, cracks, and other anomalies within an object. This can be crucial for quality control and ensuring that products meet industry standards and safety requirements.
  5. Reduced Inspection Time: Compared to traditional methods of inspection, industrial CT scanning can significantly reduce inspection time. This is especially beneficial for industries where efficiency and rapid inspection are essential.
  6. Versatility: Industrial CT scanning can be applied to a wide range of materials, including metals, plastics, composites, and more. This versatility makes it a valuable tool across various industries, from manufacturing to medical research.
  7. Reverse Engineering: CT scanning can be used for reverse engineering applications, where the internal and external geometries of a component are captured digitally. This is useful for replicating or modifying existing components.
  8. Regulatory Compliance: In industries where compliance with safety and quality standards is essential, industrial CT scanning can help meet regulatory requirements by providing thorough and accurate inspections. In summary, industrial CT scanning offers a non-destructive, highly accurate, and versatile method for inspecting internal structures of objects, making it a valuable tool in various industries for quality control, research, and product development.

At Performance Plastics, we are experts in injection molding, specializing in high-performance plastics such as PEEK, Torlon, FEP & PFA, and Torlon for medical, aerospace, and industrial applications. Our proprietary tool design software, processes, and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds.

For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales, and Marketing at 513.321.8404 or email at [email protected].

Fluorinated ethylene propylene (FEP) and perfluoroalkoxy (PFA) are fluoropolymer materials that are often used in the construction of certain components in batteries, particularly as insulating materials. While they may not directly store energy in batteries, they play a crucial role in enhancing the safety, efficiency, and performance of battery systems. Here’s why FEP/PFA plastics are important for the energy storage function of batteries:


  1. Chemical Resistance: FEP and PFA plastics are highly chemically resistant, which is crucial in battery applications. They can withstand exposure to various corrosive electrolytes and chemicals found within batteries without degrading or reacting. This resistance helps ensure the long-term stability and integrity of the battery components, leading to improved battery durability and lifespan.
  2. Thermal Stability: FEP and PFA materials have excellent thermal stability and can withstand a wide range of temperatures, from extremely cold to very hot conditions. This property is essential for batteries, as they can operate in environments with varying temperature conditions. Maintaining thermal stability helps to prevent short circuits, leakage, and overall performance issues.
  3. Dielectric Properties: Both FEP and PFA injection molded parts are excellent electrical insulators. They have a low dielectric constant and low dissipation factor, meaning they have the ability to insulate and isolate electrical components in batteries effectively. This is vital for preventing short circuits and ensuring the safe operation of the battery.
  4. Low Permeability: FEP and PFA plastics have low gas and liquid permeability, which is essential for battery separators. The separators in batteries are critical for preventing direct contact between the positive and negative electrodes, while still allowing the passage of ions. Low permeability materials help maintain this separation, preventing electrolyte leakage and maintaining the battery’s overall performance.
  5. Mechanical Strength: FEP and PFA injection molded materials are durable and mechanically robust. They can withstand mechanical stresses and pressure changes that batteries may experience during manufacturing, assembly, and use. This strength is particularly important for maintaining the integrity of battery components and preventing damage.
  6. Non-reactive Nature: FEP and PFA are non-reactive with most substances, which is essential for ensuring the purity of the battery components. They do not react with the electrolyte or other battery materials, helping to maintain the chemical stability of the battery system.

While injection molded FEP and PFA plastics do not store energy in batteries themselves, they are crucial components for ensuring the safe and efficient operation of battery systems. Their chemical resistance, thermal stability, dielectric properties, low permeability, mechanical strength, and non-reactive nature all contribute to the overall performance, safety, and longevity of energy storage systems, making them indispensable for the function of batteries in various applications. For more information on FEP and PFA plastics for batteries, please call Rich Reed, Vice President of Sales and Marketing at 440-785-7122.



Fluoropolymers are indeed an excellent choice for parts that must perform in challenging environments. These polymers, which include materials like PTFE (polytetrafluoroethylene), FEP (fluorinated ethylene propylene), and PFA (perfluoroalkoxy), offer a range of unique properties that make them ideal for such applications:

  1. Chemical Resistance: Fluoropolymers are highly resistant to a wide range of corrosive chemicals, acids, and bases. This makes them suitable for use in environments where other materials would quickly deteriorate or corrode.
  2. Temperature Resistance: These polymers can withstand extreme temperatures, both high and low. PTFE, for example, can handle temperatures as low as -200°C and as high as 260°C, making it ideal for applications in harsh temperature conditions.
  3. Non-Stick Properties: Fluoropolymers have excellent non-stick properties, which means they do not easily adhere to other materials. This is why they are often used in cookware coatings, but it’s also valuable in industrial applications where materials need to slide or not adhere to surfaces.
  4. Electrical Insulation: They have good electrical insulation properties, which is important in applications where electrical conductivity could cause problems.
  5. UV Resistance: Many fluoropolymers are highly resistant to ultraviolet (UV) radiation, making them suitable for outdoor applications.
  6. Low Friction Coefficient: These materials have a low coefficient of friction, which means they can reduce wear and tear in moving parts and machinery.
  7. Biocompatibility: Some fluoropolymers are biocompatible, making them suitable for use in medical and pharmaceutical applications.

Fluoropolymers find applications in various industries, including chemical processing, electronics, aerospace, and automotive, where they are exposed to aggressive chemicals, extreme temperatures, and other challenging conditions. Their durability, resistance, and performance characteristics make them an excellent choice for parts and components in these demanding environments.

For more information on how Performance Plastics can help you with your material choice in challenging environments, please contact Rich Reed, Vice President of Sales and Marketing at [email protected]



Thermoplastic injection molded PEEK Medical Tool

Thermoplastic Injection Molded PEEK Medical Device

High-performance polymers have gained significant attention in the field of medical devices due to their unique properties and advantages. These materials offer a compelling alternative to traditional materials like metals and ceramics in various medical applications. Here are some reasons why high-performance polymers are a great alternative for medical devices:

  1. Biocompatibility: High-performance polymers, such as PEEK, FEP, PFA, and PPSU, are inherently biocompatible. They do not trigger adverse immune responses or toxicity when in contact with biological tissues, making them suitable for implants and other medical devices that interact with the human body.
  2. Lightweight: Polymers are generally lighter than metals, making them ideal for applications where weight reduction is critical, such as orthopedic implants and prosthetics. Lighter devices can improve patient comfort and reduce the risk of complications.
  3. Corrosion Resistance: High-performance polymers are highly resistant to corrosion and chemical degradation. This property is advantageous in medical devices that come into contact with bodily fluids and other aggressive environments. Unlike metals, they do not rust or corrode.
  4. Radiolucency: Some polymers, like PEEK, are radiolucent, meaning they do not block X-rays or other imaging techniques. This feature allows for clear and accurate imaging of the surrounding tissue and device placement without interference.
  5. Customizability: Polymers can be easily molded and machined into complex shapes, which is crucial for designing patient-specific implants and devices. This customizability can improve the fit and function of medical devices.
  6. Low Friction and Wear Resistance: Polymers can offer low friction and wear characteristics, making them suitable for articulating joints and moving parts in medical devices. This reduces the risk of device failure and the need for frequent replacements.
  7. Electrical Insulation: High-performance polymers are electrical insulators, which is essential in devices like pacemakers and neurostimulators to prevent unwanted electrical interference with surrounding tissues.
  8. Thermal Stability: Many high-performance polymers exhibit excellent thermal stability, allowing them to withstand sterilization processes such as autoclaving without degradation.
  9. Cost-Effective: Compared to some specialty metals and ceramics, high-performance polymers can be more cost-effective, making medical devices more affordable for healthcare providers and patients.
  10. Regulatory Approval: Several high-performance polymers have received regulatory approval for use in medical devices, indicating their safety and suitability for these applications.

Despite their numerous advantages, high-performance polymers also have limitations, including lower strength and stiffness compared to some metals and ceramics. Therefore, their selection for specific medical device applications should consider the specific requirements and constraints of the device.

In conclusion, high-performance polymers offer a compelling alternative for medical devices due to their biocompatibility, lightweight nature, corrosion resistance, customizability, and other favorable properties. As materials science continues to advance, it is likely that high-performance polymers will play an increasingly significant role in the development of innovative medical devices.

For more information on polymers for medical devices and how Performance Plastics leverages their use, please contact Rich Reed, Vice President of Sales and Marketing at [email protected].

PFA or high-purity perfluoroalkoxy is a high-performance material ideal for the semiconductor industry due to its excellent chemical resistance, high-temperature stability, and electrical insulating properties. These characteristics make it suitable for use in extreme conditions. However, it’s important to ensure that the PFA material meets specific semiconductor requirements.

Here are some factors to consider when using injection-molded PFA in semiconductor applications:

  1. Purity: Semiconductor manufacturing requires extremely high levels of material purity to prevent contamination. Ensure that the PFA material used in injection molding meets the purity standards required for semiconductor processes.
  2. Temperature Resistance: Semiconductor processes often involve high temperatures. PFA has a high melting point and can withstand elevated temperatures, making it suitable for many semiconductor applications.
  3. Chemical Compatibility: PFA is highly resistant to a wide range of chemicals, which is advantageous in semiconductor processing where various chemicals are used. Ensure that the PFA material is compatible with the specific chemicals and processes in your semiconductor application.
  4. Electrical Insulation: PFA is an excellent electrical insulator, which is important in semiconductor equipment and components where electrical isolation is required.
  5. Surface Finish: The surface finish of injection molded PFA components should meet the cleanliness and smoothness requirements of the semiconductor industry to minimize the risk of particle contamination.
  6. Dimensional Accuracy: Precision and tight tolerances are often required in semiconductor equipment. Injection molding can achieve high levels of dimensional accuracy, but it’s crucial to ensure that the molded parts meet the required specifications.
  7. Compliance with Standards: Ensure that the PFA material and injection molding processes used comply with relevant industry standards and regulations in the semiconductor sector.
  8. Testing and Validation: Conduct rigorous testing and validation of PFA components in your semiconductor application to ensure their performance under actual operating conditions.

It’s important to work with an experienced manufacturer, such as Performance Plastics, who understands the specific requirements of the semiconductor industry. Our engineers can help you choose the right PFA material, design components to meet your needs and ensure that the injection molding process meets the strict semiconductor industry standards.

For more information on how Performance Plastics can help with your semi-conductor project, please contact Rich Reed, Vice President of Sales and Marketing at 440-785-7122 or email at [email protected]


Conductive polymers such as FEP and PFA are a class of materials that exhibit electrical conductivity while maintaining the mechanical properties and processability of traditional polymers. These materials have garnered significant attention and research interest due to their unique combination of properties, which offer a wide range of potential applications. Here are some of the benefits of conductive polymers:

  1. Electrical Conductivity: Conductive polymers can conduct electricity, making them suitable for various electronic and electrical applications. Unlike traditional insulating polymers, which do not conduct electricity, conductive polymers can carry electrical currents.
  2. Lightweight and Flexible: Conductive polymers are lightweight and flexible, which makes them ideal for applications where traditional conductive materials like metals would be impractical due to their weight or lack of flexibility. This property is particularly advantageous in wearable electronics, flexible displays, and flexible sensors.
  3. Processability: Conductive polymers can be processed using conventional polymer processing techniques, such as injection molding. This ease of processing allows for the production of complex shapes and making them versatile materials for various applications.
  4. Corrosion Resistance: Unlike metals, conductive polymers are generally corrosion-resistant, making them suitable for use in harsh environments, such as marine or chemical processing applications.
  5. Biocompatibility: Some conductive polymers are biocompatible, which means they can be used in medical devices, implantable electronics, and tissue engineering applications without causing harm to living tissues.
  6. Low Cost: Conductive polymers are often more cost-effective than traditional conductive materials like metals or semiconductors. This cost advantage can make them attractive for large-scale applications.
  7. Energy Storage: Conductive polymers are used in energy storage devices, such as supercapacitors and batteries, due to their ability to store and release electrical energy efficiently.
  8. Sensors and Actuators: They are used in various sensor and actuator applications, including chemical sensors, gas sensors, strain sensors, and smart materials that can change shape or properties in response to electrical stimuli.

While conductive polymers offer many advantages, they also have some limitations, such as lower electrical conductivity compared to metals and sensitivity to environmental factors like moisture and oxygen.

For more information on electrically conductive materials and how Performance Plastics leverages their use, please contact Rich Reed, Vice President of Sales & Marketing at 440-785-7122 or [email protected]


Maintenance of injection molds is crucial in manufacturing plastic and metal parts. It plays a significant role in ensuring product quality, minimizing downtime, and extending the lifespan of the molds. Here are some key reasons highlighting the importance of maintenance of injection molds:

  1. Quality Assurance: Regular maintenance helps uphold the quality and consistency of the manufactured products. Any wear and tear on the mold can lead to defects in the final products, such as surface imperfections, warping, or dimensional inaccuracies.
  2. Cost Efficiency: Preventive maintenance is more cost-effective than corrective measures. Properly maintained molds are less likely to break down, reducing the need for costly repairs or replacements. This can lead to significant cost savings over time.
  3. Downtime Reduction: Mold breakdowns or failures can result in production downtime, which can be extremely costly for manufacturing facilities. Routine maintenance can help identify and address potential issues before they cause major disruptions in production.
  4. Longevity of Molds: Injection molds can be expensive to produce, so maximizing their lifespan is essential to get a return on investment. Regular maintenance can extend the life of molds, allowing them to be used for a more extended period.
  5. Consistent Cycle Times: Well-maintained molds operate more efficiently, leading to consistent cycle times. This ensures that production targets can be met without unexpected delays or variations in output.
  6. Productivity Improvement: Maintaining molds at optimal conditions can enhance productivity by reducing the likelihood of production defects, mold-related issues, and unplanned downtime. This, in turn, boosts overall efficiency.
  7. Safety Considerations: Molds that are in poor condition can pose safety risks to workers. Sharp edges, loose components, or damaged parts can lead to accidents. Regular maintenance helps identify and rectify potential safety hazards.
  8. Waste Reduction: When molds are not properly maintained, defective parts are likely to be produced. This can result in increased material waste, which is both environmentally and economically unfavorable.
  9. Customer Satisfaction: Consistency in product quality, thanks to well-maintained molds, leads to higher customer satisfaction. Satisfied customers are more likely to return and recommend your products to others.
  10. Compliance with Standards: In some industries, there are strict quality and safety standards that must be adhered to. Regular mold maintenance can help ensure compliance with these standards and prevent costly fines or legal issues.

In summary, maintenance of injection molds is critical for maintaining product quality, reducing costs, minimizing downtime, ensuring safety, and prolonging the life of molds. Investing in a proactive maintenance program is a smart strategy for any manufacturing operation that relies on injection molding processes.

For more information on how Performance Plastics maintains our molds and our manages our best practices, please contact Rich Reed, Vice President of Sales and Marketing at [email protected], or visit our website and


Plastic Injection Molding HPM (high-performance material) parts with tight tolerances demand that processes are repeatable within established limits.  Performance Plastics utilizes best practices to eliminate process inefficiencies and unplanned maintenance, when working with materials such as Torlon (PAI), PEEK, Ultem (PEI) and FEP/PFA.  Simple processes must take place every shift to ensure that process and production are on target.

  • Process Validation

Process validation procedures must be completed prior to establishing process monitoring.  A validated process must run at complete cycle efficiency, producing little to no scrap for no less than 8 hours.  Evaluations and considerations must be analyzed whether a process can be repeated from one run to the next.

  • Process Installation Qualification – Making Sure Everything Works
  • Operational Qualification – Test, Test, and Test Again
  • Performance Qualification – Testing the actual Part.
  • Process Monitoring

Many companies fail to understand that a similar press or mold does not guarantee the tight tolerance processes will be repeated, especially when working with HPMs.  Each press must have its own process monitoring record, and sister molds need to be approached as completely different molds.

Areas that must be constantly monitored:

  • Fill Time
  • Peak Pressure
  • Part Weight
  • Cycle

Each value must have control limits and must be within the window established for these limits to control.

  • Basic Molding Fundamentals

The key to the HPM process consistency is the care and inspection of molds before each job.

  • Molds are cleaned and inspected.
  • Nozzles are inspected for blowback.
  • Hot runner point temperatures are verified.
  • Water is verified at the beginning of each run.

Performance Plastics embraces best practices in order to provide our customers with the quality and repeatability required for HPM tight tolerance medical, aerospace, and industrial parts.

For more information on how Performance Plastics manages our best practices, please contact Rich Reed, Vice President of Sales and Marketing at [email protected], or visit our website and

Resin compounds play a crucial role in various aerospace applications due to their lightweight, high-strength, and durable properties. They are commonly used in the aerospace industry for manufacturing components such as aircraft structures, interior components, propulsion systems, and more. Here are some key points about the use of resin compounds in aerospace applications:

  1. Composite Materials: Resin compounds are often used as matrix materials in composite structures. Composite materials are made by combining reinforcing fibers (such as carbon fibers, glass fibers, or aramid fibers) with a resin matrix. These materials provide a high strength-to-weight ratio, making them ideal for aerospace applications where weight savings are critical.
  2. Fiber Reinforced Polymers (FRP): In addition to carbon fibers, other types of fibers like glass and aramid are used in aerospace composites. Glass fiber reinforced polymers (GFRP) are used in applications that require good corrosion resistance, while aramid fiber reinforced polymers (AFRP) are known for their impact resistance.
  3. Thermosetting Resins: Epoxy resins are one of the most commonly used thermosetting resins in aerospace applications due to their excellent mechanical properties, high heat resistance, and low shrinkage during curing. They are often chosen for critical structural components.
  4. Thermoplastic Resins: Thermoplastic composites are gaining popularity in aerospace due to their improved impact resistance, damage tolerance, and recyclability. They can be reheated and reformed, allowing for potential repairs or reshaping of components.
  5. Adhesives and Bonding: Resin-based adhesives are used for bonding various components in aerospace manufacturing, including joining composite panels, attaching metal components, and creating strong bonds between dissimilar materials.
  6. Fire Resistance: Fire-resistant resins are essential for aerospace applications to ensure the safety of passengers and crew. Fire-resistant resins are often used in interior components, like cabin walls and flooring, to meet stringent safety standards.
  7. Repair and Maintenance: Resin-based materials are also used for repairing and maintaining aircraft and spacecraft structures. Composite repair patches and epoxy-based sealants can extend the life of aerospace components.
  8. Design Flexibility: Resin compounds offer design flexibility, allowing engineers to create complex shapes and optimized structures that might not be achievable with traditional materials.

It’s worth noting that the aerospace industry has stringent regulations and standards for the use of materials in aircraft and spacecraft. The choice of resin compound and its application must meet these requirements to ensure safety, reliability, and performance in various aerospace environments.

For more information on resin compounds and their uses in Aerospace Manufacturing, please contact Rich Reed, Vice President of Sales & Marketing at [email protected], or visit our website at