Nylon® is a synthetic thermoplastic polyamide that is known for its strength, temperature resilience, and chemical compatibility. It has been proven to be a lightweight, heavy-duty industrial engineering plastic replacement for metals that are resistant to both heat and corrosive chemicals.

Nylon® is a great material for parts that undergo flexure and bending.  With wear resistance far greater than many metals and other thermoplastics and a low coefficient of friction, Nylon® is ideally suited for use in slides, bearings, and other parts that need to stand up to high levels of motion and wear. Performance Plastics offers expertise in developing Nylon® resin formulations and combinations with other polymers such as glass, carbon, and mineral-reinforced versions.  For example, Minlon®, a mineral-reinforced Nylon® provides greater dimensional stability and creep resistance than unreinforced Nylon®, and lower warpage than glass-reinforced Nylon®. As a result, it is popular for use in compressor valves and big industrial parts, as well as in demanding aerospace applications.

Performance Plastics has seen Nylon®’s applications grow to include a range of applications to move water, acids, lubricants, solvents, chemicals, and fuels in automotive, military, and aerospace environments.  Although pump makers traditionally used various metals for pump housings, shaft guides, impellers, seals, bushings, and other elements, the desire to reduce pump weight, material, and processing costs have led many to opt for various Nylon® formulations instead. Performance Plastics can use Nylon® to offer a combination of physical strength, wear resistance, self-lubrication, and high cost-effectiveness.

Choosing the optimal Nylon® resin for an application depends on several factors, including the levels of pressure, temperature, and speed involved. In addition, the abrasiveness of the liquids or slurries involved, the degree of contamination that can be tolerated, and projected uses for the part must also be considered.

Nylon®’s toughness and elongation properties make it suitable for designs that involve snap-fits or press-fits. Injection-molded Nylon® parts from Performance Plastics are well-suited to secondary machining processes such as turning, drilling, tapping, and grinding, as well as ultrasonic insertion, ultrasonic welding, pad printing, and assembly.

To discover how Performance Plastics is partnering with world-class polymer scientists and industry-leading material suppliers to deliver nylon solutions, visit our website at https://performanceplastics.com or contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

How to choose the best technology for your project.

 

Plastic injection molding and 3D printing are both viable technologies. 3D printing is an additive printing process that creates objects by building up layers of material, while injection molding uses a mold that is filled with molten materials that cool and harden to produce parts.

The use of 3D printing in innovative and experimental scenarios is a viable technology for its ability to create custom plastic part designs quickly.  However, the 3D process limits your material choices, as all materials are not a fit or even available in a form suitable for 3D printing.

3D printing is best used for:

  • Quick turnaround times
  • Low volume, slower production speeds
  • Parts in the design phase with frequent changes – prototyping, lower product quality
  • Smaller part sizes

Once a design has been finalized, plastic injection molding becomes the optimal process.  Most of today’s plastic parts are manufactured using plastic injection molding – it’s best for producing large quantities quickly and reliably in high-volume runs. You have greater material options with plastic injection molding, and you can control material weight, cost, and flexibility with endless combinations of materials.  It helps organizations control the cost and integrity of designs with complexities and tight tolerances.

Plastic Injection molding is best used for:

  • High volume
  • Finalized part design
  • Enhanced strength and durability
  • Complex, precision, detailed parts

At Performance Plastics we have optimized many projects that were once manufactured using 3D printing, only to discover that injection molding was the more efficient technology.  As experts in FEP, PFA, PAI (Torlon), PEEK, and Ultem resins we frequently work with mission-critical, time-sensitive applications.  3D printing is an essential component of the design process, but If you have a project that requires high volume (5,000+ parts per year), high-temperature resins, and tight tolerances with complex geometries, plastic injection molding is your solution.

Performance Plastics’ team of experienced engineers possesses the expertise to design and manufacture technically challenging projects and offer complex solutions within harsh application industries.

For more information on how Performance Plastics can assist in your material selection challenges, please contact Rich Reed, VP of Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com.

 

The shortage of glass has been an ongoing issue. Experts say the price of glass is on the rise as global supply chain issues continue throughout the world.  The glass shortage affects all industries that rely on glass for their containers, but right now, with the convergence of annual flu, the emergence of new COVID variants (Omicron), and the outbreak of Respiratory Syncytial Virus Infection (RSV) in children, the medical field is in dire need of glass for vials.

Silicon, which is one of the materials that is used in glass manufacturing has been in short supply for over a year.  Medical vials are made of Type I borosilicate glass, and this form uses the most silicon. The decreases in the recycling rates during the pandemic, are additionally hurting the production of glass vials.

Fluoropolymers such as FEP, PFA, and PCTFE are great alternative materials for glass. These fluoropolymers are superior to conventional plastics. Their inert, non-reactive, and unmatched durability makes their properties ideal for use in the medical industry. These fluoropolymers are also non-stick, ensuring the product does not adsorb to surfaces. They are also virtually impervious to chemical, enzyme, and microbiological attacks. All the benefits of FEP, PFA, and PCTFE make these fluoropolymers a perfect material to create vials out of, especially since they are injection moldable.

At Performance Plastics, we have extensive experience in injection molding fluoropolymers. We have developed proprietary tooling and processes enabling the injection molding of small, thin-walled, complex parts. Our expertise in fluoropolymers and injection molding can be the solution to the shortage of glass.

For more information on how to use fluoropolymers as your glass shortage solution contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

 

Celebrating a Milestone with New Products & Big Goals

Performance Plastics Ltd. of Cincinnati, Ohio marked its fortieth anniversary this year as a leader in the design and manufacture of high-performance thermoplastic conponents.  The company works with specialized polymers and tight tolerances, and follows rigorous quality assurance protocols.  It anticipates big growth shortly, based on its wealth of experience and cutting edge products such as EnduroSharp(R) aerospace maintenace tools.

To continue reading: https://mags.manufacturinginfocus.com/mag/MIFSep2022/#page=22

 

 

You know Performance Plastics for our EnduroSharp® Non-marring Aircraft Maintenance Tool, but did you know that Performance Plastic is also an expert in tight tolerance custom injection molding?

For four decades, Performance Plastics has been delivering the highest quality custom plastic injection molding solutions in the industry for our customers. We take a highly specialized and consultative approach, working closely with our customers to develop the solutions needed to solve the most complicated issues.

We have the experience to take a project from concept to production in-house. Every step of the process, from design and engineering, to tooling, protype, and full production, is done under the supervision of our experienced team. We produce complex, tight tolerance custom molded products of all types for the aerospace, medical and diversified industrial sectors.

We are technical specialists in collaborating and executing advanced, custom solutions for our customers. Injection-molded product fabrication is a complex process, especially when dealing with parts that are the size of a pin.  Our process is comprehensive and efficient to ensure that custom solutions can be delivered quickly and cost-effectively. High performance materials include PFA, FEP, PEEK, ULTEM, and Torlon.

With the ability to injection mold shot sizes as small as .015 grams with a wall thickness as thin as .008 of inch, Performance Plastics is anything but typical.  We are one of the leaders in tight tolerance, highly detailed medical parts.

For more information on how Performance Plastics can solve your tight tolerance molding challenges, please contact Rich Reed, VP Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com.

 

 

Thermoplastic medical spinal implant component, precision thermoplastic medical check valve, non-contaminating Thermoplastic medical valve component, precision thermoplasticmedical spinal implant component, non-contaminating medical spinal implant component

High Precision, PEEK, Thermoplastic Medical Spinal Implant Component

PEEK® is an organic thermoplastic polymer that offers excellent mechanical and chemical resistance properties because of its chemical make-up.  PEEK® is short for polyether ether ketone, which means it’s a member of the polyaryletherketone family. These polymers are notable for their phenylene rings and oxygen bridges, which result in resilience, durability and strength.

PEEK® is great for medical applications because it is one of the few high-performance polymers that is a bio-material – it is highly resistant to radiation which allows for easy sterilization.

  • Biocompatibility – PEEK® is a proven biomaterial, which means it is considered safe for use with in vivo applications. PEEK® shows no signs of cytotoxicity, genotoxicity, or immunogenetics.  The material has been successfully in use for over 20 years.
  • A favorable flexural modulus – Compared to metals such as titanium, stainless steel and other metal biomaterials, PEEK® is much more flexible. It behaves much more like bone in how it flexes and bears weight.  It does not cause stress shielding in nearby bone.
  • Pure radiolucency – PEEK® renders transparent on X-rays, CT and MRI scans – which makes it easy for surgical teams to track the positioning of implants and detect complications.

Many medical device manufacturers now use PEEK® as a way to improve the biocompatibility of load bearing implants.  PEEK® is increasingly becoming the new standard biomaterial across a range of medical, orthopedic, and dental applications.

Performance Plastics’ team of experienced engineers possess the expertise to design and manufacture technically challenging projects and offer complex solutions within the medical industry.

For more information on how Performance Plastics can assist in your material selection challenges, please contact Rich Reed, VP Sales & Marketing at 513.321.8404 or rreed@performanceplastics.com.

When starting to produce a new product, it’s important to decide on the type of process you will use for the manufacturing process.  While injection molding is a very cost-effective process, the initial startup cost of the mold is often a barrier of entry.

Injection molding is a manufacturing process that is very efficient for producing parts in large volume.  It is typically used in the mass production process where the same part is being created in the thousands or even millions.

Upfront costs tend to be very high due to the design, testing, and tooling requirements.  If you are going to produce parts in high volumes, you want to make sure you get the design correct the first time. So, what are the costs associated with producing an injection mold?

  • Choice of Resin

One of the biggest factors that effect the price of the plastic injection molding process is the type of plastic resin used in manufacturing.  The choice of material will change the price based on color, compounding, and additives.  The most abrasive or corrosive the material, the most expensive the mold.

  • Complexity

The more intricate the component, the more difficult it is to design the manufacturing process.  Part complexity, tolerances, number of undercuts as well as surface finish all effect the cost.

  • Size

The size of the component also drives the price.  Larger parts require larger, more expensive molds, as well as more material to manufacture.  Larger molds also take longer to make, which increases the costs.

  • Mold Material

The material the mold is made from significantly impacts the price.  Short production molds are usually made from less expensive materials such as aluminum.  Long production molds require molds made from more durable and expensive materials like steel that will retain their features across several years.

  • Cavities

The higher the number of cavities – the higher the production costs.  Experienced mold designers can maximize cavitations to enhance productivity and lower costs even for the most intricate parts and components.

  • Mold Base

The base of the mold is the case used for holding all the components, inserts and cavities of the mold.  The price of the mold base depends on the type of steel and the size of the mold.

At Performance Plastics, we know how important it is to make the correct decisions when designing a mold.  We have a team of process experts who work with our clients to design and assist in the mold process. We focus on the total cost of ownership of a mold, production capacity, longevity, functionality, as well as initial capital expense.

To learn more about how Performance Plastics can help you with your molding process, contact Rich Reed, Vice President of Sales and Marketing, at (513) 321-8404 or RReed@performanceplastics.com.

Navigating supply chain issues in this economic environment where there are rampant material shortages is an ongoing challenge. But many commonly used engineered resins may serve well as replacements for your application. Performance Plastics are experts in material selection and can assist your organization in choosing the best material based on the functionality of your part.

PEEK (Polyether Ether Ketone), PAEK (Polyaryletherketongs) and PEI (Polyetherimide) are high performing engineering thermoplastics that offer a unique combination of thermal stability, chemical resistance, and excellent mechanical properties.

PEEK is extremely tough and has very high impact strength.  Due to the crystalline nature of the material, a high degree of mechanical properties is retained close to their melting temperature.  The also have a low creep and good wear properties.  It is also known for excellent chemical resistant during hydrolysis. PEEK is actively used in metal to plastic replacement applications.

PAEK is a high thermal stability material that offers high strength and high resistance to oxidation. It offers better solvent resistance and is more amorphous based on its semi-crystalline structure.  This makes it an excellent choice for medical components, sea equipment and valve components.

PEI is a high-performance engineering plastic that offers outstanding thermal, mechanical and chemical properties.  It is often the best choice where high mechanical strength is needed in conjunction with high temperature, corrosion and wear resistance. This makes PEI an excellent alternative for applications requiring tight tolerances and low warp such as medical devices, scientific equipment parts and semiconductor equipment components.

Performance Plastics are specialists in high performance plastics engineering for many industries including medical, defense and industrial applications. We partner with our customers to offer solutions to some of the most challenging applications.  For more information, please contact Rich Reed, Vice President of Sales & Marketing at 513.321.8404 or email rreed@performanceplastics.com.

 
Mating parts providing a fluid or gas seal are critical components in most mechanical systems. We commonly think of them in valves and connector assemblies, but they are also found in pressure vessels, compressors, pumps, motors, engines, transmissions, and almost all mechanical power trains. Seals, especially those that mate to moving parts, have a demanding set of quality requirements. Each application has its own specific needs, but all seals are characterized by tight dimensional tolerances and excellent surface finish.

Our customer wanted to improve the usable life and leakage profile of a valve without absorbing any increase in component cost.  The sealing surface specifications were tightened to 0.0005 inches (12.7 µ) which was key to accomplishing the performance improvements.

The previous supplier of this component was unable to meet the more stringent sealing surface dimensional tolerances “out of the mold” necessitating a finish machining operation to bring the part into tolerance.  However, machining the sealing surface removed the resin-rich surface of the part creating micro-cracks in the surface and exposing reinforcing fibers. Both of these unavoidable consequences of machining negatively impacted component performance, useful life and cost.

Solution

Performance Plastics knew eliminating the machining operation would improve strength, reduce trapped impurities, and lower manufacturing cost.  Our engineering team focused on producing a “true net shape” part directly out of the mold.   Key to accomplishing the customers goals involved leveraging our proprietary, iterative tool design process.  It required making a 3D CT scan of preliminary molded parts measuring, in this case, approximately 1 million critical part dimensions.  This analysis identified minute distortions.  Utilizing internally developed proprietary software, PPL integrated the CT scan data with CAD/CAM software to make exacting mold modifications eliminating the out of tolerance conditions.  This process contributed to producing a best in class “out-of-mold” conforming part.

The manufacturing process also had to be optimized to produce the desired performance results.  Although the material posed molding challenges, PPL decided to direct gate the part at the top to ensure symmetry of material flow throughout the cavity, critical in achieving roundness to the sealing surface.

The results of development program surprised everyone. Performance Plastics was able to achieve  “out of mold” net shape parts with a seal surface capable of meeting sealing ranges of 100 psi to 3,000 psi, with no porosity and consistently meeting dimensional tolerances of 0.0003 inches, or 7.62 µ. Eliminating the need for subsequent finish machining dropped the leakage rate for the valve by 50%, from 1.0 scfm to 0.5 scfm.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics.  Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds. For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales and Marketing at 513.321.8404 or email at rreed@performanceplastics.com

With the population aging and improving technology, medical device designers are being asked to increase performance and longevity of devices as well as decrease costs.  One of the most effective methods of achieving both these goals is a metal-to-plastic conversion.

Plastics can be used to replace even the most sophisticated medical device by incorporating simple design modifications.  High performance polymers offer the same strength and rigidity as some metals along with some additional advantages.

Advantages of the medical resins include:

  • Reduced Device Weight
  • Increased Design Freedom – Moldability of all Features
  • Improved Functional Aesthetics
  • Reduced Sterilization Burden
  • Improved MRI Compatibility

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics.  Ultem® PEI and Peek are premium medical grade resins that are ideal for the manufacturing of medical parts and components.  Medical grade resins provide excellent mechanical properties and are highly resistant to chemicals and thermal degradation, making them highly desirable materials for plastic injection molded products within the medical industry.

At Performance Plastics, we utilize a unique combination of extensive material knowledge, mold flow analysis, a design system and process expertise to eliminate or minimize the need for secondary operations. Our expertise in process control allows us to effectively injection mold medical resins into parts with extremely tight tolerances. This gives us the ability to provide an injection molded part made from the highest strength and stiffness of any medical resin.

PEI is one of the many high performance polymers Performance Plastics specializes.  For more information on Performance Plastic’s capabilities, please contact Rich Reed, our Vice President of Sales and Marketing at 513.321.8404 or email at rreed@performanceplastics.com.