UV-C light can be used to kill germs such as bacteria, viruses such as Covid-19, and spores. UV-C light disrupts the DNA of pathogens, eliminating their ability to replicate This technology works by the line of sight so the light must reach the surface in order for the bacteria or virus to be deactivated.

Historically, medical device manufacturers did not consider plastics to mold parts because plastic resins posed the possibility of cross contamination.  Today, medical device engineers are reconsidering plastics, specifically fluoropolymers that can be formulated to resist UV-C light degradation and reflectivity to leverage sterilization benefits and part manufacturing flexibility.

Fluoropolymers or Teflon®, are a group of high-performance plastics with excellent temperature and chemical resistance that are increasingly being injection molded in a variety of medical products today.  Unique characteristics such as UV-C light reflectivity, biocompatibility, low friction, chemical inertness, non-porosity, and compatibility with UV-C sterilization technologies, make them suitable for uses in many types of medical devices.

Fluoropolymers, such as FEP and PFA are resistant to higher transmission rates of UV light than glass, polyethylene, or polycarbonate allowing the full spectrum of solar light to pass through offering the benefits of sterilization.  These fluoropolymers are flexible and do not discolor, making them an ideal material to produce medical components to be UVC sterilized.

Performance Plastics, located in Cincinnati, OH  has over 30 years’ experience in molding tight tolerance advanced plastics such as Fluoropolymers (FEP & PFA) for the medical industry.  We have developed proprietary processes enabling injection molding of parts that are thin-walled, tight dimensional tolerances, and complex geometries.

For more information and solutions, please contact Rich Reed, Vice President of Sales & Marketing at 513-321-8404 or email [email protected].

Performance Plastic’s  Metrology Lab focuses on advancing measurement science through our ability to understand all aspects of your part.  Mechanical Engineer, Jordan Murray, dives into our industrial computed tomography (CT) Scanning process, explaining the benefits of CT Scanning and how it helps us to solve your problems.

To learn more about Performance Plastic’s CT Scanning process contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected].

The shortage in glass has been an ongoing issue. This year with restaurants and bars being closed we have seen a greater shortage in the glass industry. The collection of wine and beer bottles from restaurants contributes to a large volume of recycled glass needed to meet demands. The glass shortage affects all industries that rely on glass for their containers, but right now the medical field is in dire need of glass for vials.

The Covid-19 pandemic has created a lot of ripple affects on various industries. The decrease in the recycling rate during the pandemic, is inadvertently hurting the production of glass vials. The pandemic has also increased the need of vials for the Covid-19 vaccine. Public health experts have estimated between 7 billion and 14 billion vials will be needed to distribute the vaccine. With the demand of vials going up and the supply of glass going down the need for an alternative material to create the vial is needed.

Fluoropolymers such as FEP, PFA, and PCTFE are great alternative materials for glass. These fluoropolymers are superior to conventional plastics. Their inert, non-reactive, and unmatched durability makes their properties ideal for use in the medical industry. These fluoropolymers are also non-stick, ensuring product does not adsorb to surfaces. They are also virtually impervious to chemical, enzyme and microbiological attack. All the benefits of FEP, PFA, and PCTFE make these fluoropolymers a perfect material to create vials out of, especially since they are injection moldable.

At Performance Plastics, we have extensive experience injection molding fluoropolymers. We have developed proprietary tooling and processes enabling the injection molding of small, thin-walled, complex parts. Our expertise in fluoropolymers and injection molding can be your solution to the shortage in glass.

For more information on how to use fluoropolymers as your glass shortage solution contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected].

Covid-19 has impacted our world in more ways than one. The ability to keep your office, workspace, and your whole environment sanitized has increased greatly. The use of cleaning supplies for sanitation increases depending on the type of surface that you are sanitizing. Some surfaces are more porous than others needing to be sanitized more often to maintain a clean environment. At Performance Plastics, we deal with different types of plastics every day, making us experts in various materials that excel in a clean environment.

The type of material a product is made from is a big factor when keeping a clean environment. We have a wide array of high-performance plastics to choose from for your product, however, our go to material for clean environments is always Fluoropolymers. Fluoropolymers are virtually impervious to chemical, enzyme and microbiological attacks while eliminating biodegradation issues. The non-stick properties of these polymers reduce adhesion, making it the perfect surface for clean environments. The ability to keep liquids, gel, powder and other contaminates from sticking to the surface is what makes fluoropolymers safe for clean environments. There are various types of fluoropolymers such as PTFE, PFA, and FEP. Each polymer has their own strengths and weaknesses when it comes to various applications.

For more information on Fluoropolymers, contact Rich Reed, Vice President of Sales and Marketing, at (513) 321-8404 or [email protected].

EnduroSharp® Torlon® Adhesive Reamer (TAR) tools are non-metallic, multi-fluted, straight-walled reamers. TAR tools are used to remove non-metallic debris such as cured sealants and adhesives from fastener and bushing holes in metallic or composite structures without damaging the structures. The first four TAR sizes were in high demand with a need to add additional outside diameter reamer sizes. The five new sizes allow you effectively remove sealants and adhesives from a broader range of fastener and bushing holes. The new TAR sizes broaden the outside diameter range from 0.190” all the way to 0.4005”, creating a more dynamic tool set for your aircraft maintenance toolbox.

To learn more about our new TAR sizes, contact Rich Reed, our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected].

Performance Plastics Improves Compressor Valve Performance With Poppets Made From VICTREX® PEEKPolymer

Manufacturers of check valves and pressure relief valves for hydraulic and pneumatic compressors are constantly looking for ways to improve the performance of their products. Valve performance, more than any other component, determines compressor efficiency.

To achieve reduction in fluid leakage, noise and cost, and extended valve life, Performance Plastics (PPL), recommends replacing the metal poppets with poppets made of VICTREX® PEEK™ polymer, a high performance thermoplastic. Experience has shown that converting to a poppet made from VICTREX PEEK polymer provides tremendous improvements in productivity.

ALLOWS WIDER OPERATING RANGE

One of the major benefits of using VICTREX PEEK polymer   is that it allows the valves to operate in high and low pressure applications. It increases the number of applications in which valves and compressors can be used.

SUPERIOR IMPACT RESISTANCE

VICTREX PEEK POLYMER —

Ideal Replacement for Metal Poppets

Metal poppets have always posed a number of challenges. They can be difficult and costly to machine and the sealing surface can be inconsistent due to difficulties in machining defect-free seat surfaces.

As a replacement for metal, VICTREX PEEK high performance polymer is an engineering solution due to its outstanding combination of properties. Substituting plastic for metal maintains strength while improving corrosion resistance, reducing weight, and allowing for greater design flexibility.

Another benefit of using VICTREX PEEK polymer is its superior impact resistance. According to Performance Plastics, one of the primary reasons why valves fail are the fissures brought on by repeated impact pressure. PPL has had applications where VICTREX PEEK polymer has passed two million impact cycles and another where it has passed 20 million impact cycles.

BETTER SEALING AND WEAR RESISTANCE

Because VICTREX PEEK polymer is compliant and can conform to the mating seat surface, it provides better sealing performance and less leakage than metal poppets. It also offers excellent wear resistance and improved wear conditions on the mating seat surface. Wear and damage to the mating seat surface is a big issue with metal poppets and re-work of pumps and valve assemblies is both costly and time consuming on the production line.

PROPERTIES OF VICTREX PEEK POLYMER

  • High Temperature Resistance — Can withstand continuous operating temperatures of up to 260°C (500°F). Also maintains short-term mechanical properties at temperatures approaching its melting point of 340°C (644°F).
  • Wear Resistance — Outstanding wear resistance over wide ranges of pressure, velocity, temperature and counterfacial
  • Mechanical Properties — Excellent strength, stiffness and long-term properties, such as creep and fatigue, retained over a wide range of temperatures and
  • Chemical Resistance — Exhibits outstanding resistance to a wide range of chemical and corrosive environments, even at elevated temperatures up to 200°C (392°F).
  • Hydrolysis Resistance — Retains high levels of mechanical properties and dimensional stability when continuously operating in water, brine or steam at elevated temperatures and
  • Dimensional Stability — Remarkably stable, resisting changes to its properties due to temperature, moisture, chemical attack or physical

METAL REPLACEMENT APPLICATIONS

Metal to plastic conversions and metal part replacement applications are areas of expertise at Performance Plastics. Because of its superb all-around properties, Performance Plastics has used VICTREX PEEK polymer successfully in many metal replacement applications including:

  • A poppet made with VICTREX PEEK polymer replaced a two-piece metal assembly, resulting in a significant cost reduction. It also improved initial product quality and reduced customer valve rework from 200 units per month to less than
  • Poppets made with VICTREX PEEK polymer provided more sensitivity than the metal poppets, resulting in more consistent pressure relief actuation performance. The plastic poppets also provided a lower noise level than the metal

SUMMARY

Performance Plastics is confident that their experience and proven track record in the high performance area can greatly benefit customers by solving some of their most difficult applications.

Victrex is an innovative leading manufacturer of high performance polyketones, including VICTREX® PEEK™ polymer, VICOTE® Coatings and APTIV™ film.

These materials are used in a variety of markets and offer an exceptional combination of properties to help processors and end users reach new levels of cost savings, quality and performance. All Victrex material production comes under Victrex’s ISO 9001 quality registration.

Victrex USA, Inc.

300 Conshohocken State Road Suite 120

West Conshohocken, PA 19428 USA

Tel: + (1) 800-VICTREX Tel: + (1) 484-342-6001

Fax: + (1) 484-342-6002

Email: [email protected] www.victrex.com

Performance Plastics, Ltd., is one of the pioneer molders specializing in injection molding high performance plastics, and other high performance resins. The company develops innovative, cost effective manufacturing solutions for applications that require highly engineered plastics, sophisticated part geometry, tight tolerances, and technical expertise.

Performance Plastics, Ltd.

4435 Brownway Avenue

Cincinnati, OH 45209

USA Tel: + (1) 513 321-8404

Fax: + (1) 513 321-0288

Email: [email protected] www.performanceplastics.com

VICTREX PLC BELIEVES THAT THE INFORMATION CONTAINED IN THIS BROCHURE IS AN ACCURATE DESCRIPTION OF THE TYPICAL CHARACTERISTICS AND/OR USES OF THE PRODUCT OR PRODUCTS, BUT IT IS THE CUSTOMER’S RESPONSIBILITY TO THOROUGHLY TEST THE PRODUCT IN EACH SPECIFIC APPLICATION TO DETERMINE ITS PERFORMANCE, EFFICACY AND SAFETY FOR EACH END-USE PRODUCT, DEVICE OR       OTHER APPLICATION. SUGGESTIONS OF USES SHOULD NOT BE TAKEN AS INDUCEMENTS TO INFRINGE  ANY  PARTICULAR  PATENT.  THE  INFORMATION  AND  DATA  CONTAINED  HEREIN  ARE  BASED  ON  INFORMATION WE BELIEVE RELIABLE. MENTION OF A PRODUCT IN THIS DOCUMENTATION IS NOT A GUARANTEE OF AVAILABILITY. VICTREX PLC RESERVES THE RIGHT TO MODIFY PRODUCTS, SPECIFICATIONS AND/OR PACKAGING AS PART OF A CONTINUOUS PROGRAM OF PRODUCT DEVELOPMENT.

VICTREX PLC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, A WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR OF INTELLECTUAL PROPERTY NON-INFRINGEMENT, INCLUDING, BUT NOT LIMITED TO PATENT NON-INFRINGEMENT, WHICH ARE EXPRESSLY  DISCLAIMED,  WHETHER EXPRESS OR IMPLIED, IN FACT OR BY LAW. FURTHER, VICTREX PLC  MAKES  NO  WARRANTY  TO  YOUR  CUSTOMERS  OR  AGENTS,  AND  HAS  NOT  AUTHORIZED ANYONE TO MAKE  ANY  REPRESENTATION  OR  WARRANTY  OTHER  THAN  AS  PROVIDED  ABOVE.  VICTREX  PLC  SHALL  IN  NO  EVENT  BE  LIABLE  FOR  ANY GENERAL, INDIRECT, SPECIAL, CONSEQUENTIAL, PUNITIVE, INCIDENTAL OR SIMILAR DAMAGES, INCLUDING WITHOUT LIMITATION, DAMAGES FOR HARM TO

BUSINESS, LOST PROFITS OR LOST SAVINGS, EVEN IF VICTREX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, REGARDLESS OF THE FORM OF ACTION.

VICTREX® is a registered trademark of Victrex Manufacturing Limited. PEEK™, PEEK-HT™ and APTIV™ are trademarks of Victrex plc. VICOTE® is a registered trademark of Victrex plc.

 

Proprietary Tool Design Software Contributes To Precise Sealing Surface

  • Market: Oil & Gas
  • Project Requirement: Produce an “out-of-mold” net shape fiber reinforced PEEK seal holding dimensional tolerances of .0003 inches.

Overview

Mating parts providing a fluid or gas seal are critical components in most mechanical systems. We commonly think of them in valves and connector assemblies, but they are also found in pressure vessels, compressors, pumps, motors, engines, transmissions, and almost all mechanical power trains. Seals, especially those that mate to moving parts, have a demanding set of quality requirements. Each application has its own specific needs, but all seals are characterized by tight dimensional tolerances and excellent surface finish.

 

compressor valve plate with thermoplastic seals

Dresser-Rand is among the largest global suppliers of custom-engineered rotating equipment solutions for long-life, critical applications in the oil, gas, chemical, petrochemical, process, power, military, and other industries worldwide.  Their industry leading Magnum™ valves are used in all brands of reciprocating compressors, where they are known for operating at high compressor speeds and pressure differentials. The product contains 30 to 100 valve elements manufactured from a fiber reinforced PEEK thermoplastic, providing the high strength and low inertia necessary for reliability at high operating speeds.

 

Challenge

Dresser-Rand engineers wanted to improve the usable life and leakage profile of their Magnum valve without absorbing any increase in component cost.  The sealing surface specifications were tightened to 0.0005 inches (12.7 µ) which was key to accomplishing the performance improvements.

thermoplastic sealing valve

Dresser-Rand’s then current supplier of this component was unable to meet the more stringent sealing surface dimensional tolerances “out of the mold” necessitating a finish machining operation to bring the part into tolerance.  However, machining the sealing surface removed the resin-rich surface of the part creating micro-cracks in the surface and exposing reinforcing fibers. Both of these unavoidable consequences of machining negatively impacted component performance, useful life and cost. While it’s never easy to get “something for nothing”, Dresser-Rand knew the right people to talk to, the injection molding thermoplastic experts at Performance Plastics, LLC (PPL).

Solution

Performance Plastics knew eliminating the machining operation would improve strength, reduce trapped impurities, and lower manufacturing cost.  Thus, PPL’s engineering team focused on producing a “true net shape” part directly out of the mold.   Key to accomplishing the customers goals involved leveraging the Company’s proprietary, iterative tool design process.  It required making a 3D CT scan of preliminary molded parts measuring, in this case, approximately 1 million critical part dimensions.  This analysis identified minute distortions.  Utilizing internally developed proprietary software, PPL integrated the CT scan data with CAD/CAM software to make exacting mold modifications eliminating the out of tolerance conditions.  This process contributed to producing a best in class “out-of-mold” conforming part.

The manufacturing process also had to be optimized to produce the desired performance results.  Although the material posed molding challenges, PPL decided to direct gate the part at the top to ensure symmetry of material flow throughout the cavity, critical in achieving roundness to the sealing surface.

Results

The results of development program surprised everyone. PPL achieved “out of mold” net shape parts with a seal surface capable of meeting sealing ranges of 100 psi to 3,000 psi, with no porosity and consistently meeting dimensional tolerances of 0.0003 inches, or 7.62 µ. Eliminating the need for subsequent finish machining dropped the leakage rate for the valve by 50%, from 1.0 scfm to 0.5 scfm. At the same time, Dresser-Rand reported a doubling of estimated lifetime from 10M to 20M cycles between valve element replacement. Lastly, PPL’s direct gating approach improved material efficiency, by eliminating the sprue and runner system, resulting in a lower price per part.  Dresser-Rand’s customers benefitted from improved performance, increased service life and lower maintenance costs.

For more information about our net shape molding process please contact us.

PPL Races To Solution With Thermoplastic Gear

  • Market: Automotive
  • Project Requirement:  Develop a longer lived, more efficeint drop in replacement for a metal component
  • Project Requirement:  Develop a material with a low coefficient of friction not needing lubricating fluids

Overview

Metals have been the first choice of design engineers for almost three centuries. Developments in highly engineered thermoplastics materials are challenging that dominance. The aerospace and automotive industries have led the charge in this dramatic changeover, initially driven by the need to reduce weight to gain fuel efficiency. Advanced thermoplastic and thermoset systems, including fiber reinforced compositions, are now finding their way into almost every industry.

Some of the benefits arising from metal to plastic conversion are:

  • Reduced part weight and inertia;
  • Net shape (or near net shape) manufacturing, improving material efficiency;
  • Simplified manufacturing processes, with higher repeatability and less scrap;
  • Higher tensile strength with proper part design;
  • Increased part lifetime in corrosive and/or abrasive environments;
  • Greater conformability, providing improved sealing characteristics;
  • Increased lubricity;
  • Greater design flexibility.

Challenge

Race car engineers are always looking for a performance edge with their drive trains. Keeping power output up at maximum level is critical racing success. So when engine mechanics noticed their bronze distributor gear showed noticeable wear by race end, they knew vehicle performance was significantly degraded. The key question was whether or not material substitution could provide them with a longer lasting, higher performing gear.

Fortunately, the designers turned to Performance Plastics, LLC (PPL) for help. Working with Victrex plc, a supplier of high performance thermoplastic polymers, PPL developed an injection molded replacement for the conventional bronze alloy gear. As with most metal to plastic conversions, the first and most critical step is material selection. In this application, the part had to maintain structural rigidity at 120°C (250°F) operating temperatures while being subjected to oil and gasoline vapors.

Solution

PPL teamed with Victrex® technical development engineers to create a custom resin able to survive the high under hood operating temperatures and the abrasion from material to material contact.  Our collective efforts resulted in a unique carbon fiber filled PEEK compound embedded with additives obviating the need for additional lubricants.  PPL injection molds gear blanks to near net shape which are then finished by machining the gear teeth to the desired involute shape.  The injected molded PEEK gear is capable of maintaining a high level of its physical properties while operating close to its melt temperature of 343°C (645°F), well in excess of the requirement.

Results

The new gears were tested in a number of cars before being used in actual races. The gears were examined for surface cracks, chemical attack, distortion and abrasion. Initial testing showed no detectable wear in over twenty-four hours of racing. Additionally, the new gears provided an 81% reduction in part mass and inertia, helping to deliver faster throttle response and more horsepower to the drive wheels. After multiple years on the racing circuit, a single gear is now being used for an entire season, as opposed to being replaced after every race.

For more information about metal to plastic conversion please contact us.

Injection Molding Biocompatible Fluoropolymers For Medical Device Industry

Biocompatible Fluoropolymers And Advances In Injection Molding These Materials For Medical Devices, Drug Delivery Systems And Storage Components

Abstract

Injection molded fluoropolymers provide the chemical resistance and material performance needed for the manufacturing, storage and delivery of next generation cancer and biologic drug technologies. Fluoropolymers barrier properties, thermal properties and low surface adhesion characteristics offer advantages for powder and viscous liquid manufacturing, storage and delivery components.

In the past, fluoropolymer were not often considered for high volume parts with complex geometries due to injection molding process limitations. Developments in mold design and tooling steels combined with new manufacturing equipment and processing techniques now allow the use of these biocompatible materials for high volume drug storage and delivery components.

Introduction

Polyethylenes, polypropylenes and polycarbonates currently used for drug storage containers and delivery components will struggle to meet future efficacy requirements. Next generation drug technologies are bringing new handling and dispensing challenges because of increased chemical resistance and cytotoxicity issues. Long-term storage  solutions that  maintain performance and extend shelf life will be required. Improvements in dosage control and minimizing or eliminating the use of silicone coating operations in drug delivery components have also become industry wide concerns. Because of the elimination of traditional injection molding process limitations, product design engineers can now cost- effectively use fluoropolymers inherent material property benefits to address these issues.

Fluoropolymer Material Benefits

Fluoropolymers are chemically inert and pure generally containing no additives that could contaminate liquids or solids during storage or delivery. Fluoropolymers barrier properties resistance to chemical, enzyme and microbiological attack also eliminate biodegradation issues.

Barrier Properties of Thermoplastics

 

Figure 1. Barrier Properties of Thermoplastics

Compared to current plastics, the barrier properties of fluoropolymers (Figure 1) are exceptional. Aging, even at high temperatures and in the presence of solvents, oils, oxidizing agents, ultraviolet light and other environmental agents, is minimal because fluoropolymers do not use any leachable or degradable stabilizing additives. Fluoropolymers  also  have  a  low  refractive  index  and visual  appearance  that  is  unchanged  after  exposure  to light. Applications include drug containers and delivery systems components including bottles, vials, syringes and specimen trays.

Low Surface Energy Material Comparison

 

Figure 2. Low Surface Energy Material Comparison

Fluoropolymers have one of the lowest coefficients of friction of any solid material (Figure 2). Low surface energy in its solid state provides an anti-stick, non-wetting contact surface that is hydrophobic and completely resistant to hydrolysis. For sprays and inhalers, fluoropolymer manifolds can minimize drug delivery buildup to assure consistent dosing. Other applications include medical devices, surgical equipment, syringes, plungers, valves and connectors.

Fluoropolymer Processing

Concerns about fluoropolymer material application and processing limitations are prevalent.  It is still generally thought that sintering or machining are the only viable alternatives because of corrosion and thermal issues during the traditional injection molding process.  Temperatures of molds and equipment can range from 300°F to 800°F.

Highly toxic gases produced have an extremely corrosive effect on both molds and machines. Mold deterioration, runner system scrap rates, melt fracture, delamination and dimensional limitations of traditional gating methods. New fluoropolymers, processing equipment and manufacturing methods have been developed to address both by-product and material waste issues.

Continue reading by clicking, Performance Plastics white paper on fluoropolymers for the medical device industry or contact us to learn more.

 

Cost Effective Fluoropolymer Molding

  • Market: Medical/Life Science
  • Project Requirement:  Manufacture a cost effective, conforming fluoropolymer part

Fluoropolymers (PFA, PEF. ETFE, PTFE, PVDF) are ideal for many medical applications due to their desirable attributes including biocompatibility, lubricity, sterilization, chemical inertness, stability over a wide temperature use range, barrier properties and high-purity with low extractables and leachables. However, fluoropolymers are relatively expensive and are difficult to injection mold (shear sensitivity, high melt temperature, and fluorine outgassing when melted).

Overview

Our customer, a manufacturer of diagnostic lab equipment, developed a new system automating a critical, but time consuming, manual diagnostic process. This system greatly reduced processing time, but utilized PFA, an expensive material, in its small (features as small as 0.20 mm), thin-walled (down to 0.30 mm), highly complex consumable parts. In fact, prior to contacting Performance Plastics (PPL), the customer had worked with other high end molders, who while even ignoring cost, were unable to manufacture the part.

Challenge

As mentioned above, fluoropolymers by their nature are difficult to mold. Further complicating the challenge was the highly complex, thin walled design of the part. The customer was looking for a way to cost effectively manufacture a compliant part.

Solution

The customer, on advice from its material supplier, contacted PPL to develop a cost effective injection molding solution. PPL leveraged its extensive fluoropolymer expertise in designing a solution to this challenging component. Our solution began with a hot runner system and mold designed to greatly reduced shear forces inherent in the injection molding process. Mitigating shear is key to preserving the mechanical properties inherent in the resin. Further, PPL utilizes proprietary metallurgy highly resistant to corrosion from fluorine gas. This significantly extends the useful life of the hot runner system, tooling and all other wetted component coming in contact with the melted resin. Lastly, PPL engineers incorporated a direct gated multi-cavity tool design eliminating the sprue and runner associated with traditional injection molding processes. Employing a direct gated tool design removes the material waste associated with the sprue and runner, particularly important when utilizing expensive resins such as fluoropolymers.

Results

PPL was able to produce a compliant part within 60 days while meeting their cost target. This allowed the customer to successfully introduce its new automated diagnostic system. The multi-cavity mold has reduced the production cycle and lowered the amount of required raw and finished goods inventory. Additionally, the advanced metallurgy developed has been leveraged to produce longer life/lower maintenance molds for other chemically reactive or abrasive resin systems.

For more information about our proprietary molding process please contact us.