EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. EnduroSharp® tools are made from Torlon®, a high strength polymer, creating a non-metallic scraper tool that will not damage composite structures during use. The EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutter, bits, and discs for removal of adhesives on aircrafts. The product line even consists of kits containing all of the parts and sizes that you will need.

The EnduroSharp® Scraper Blade & Holder Kit is one of the most popular kits ordered. This kit includes the standard scraper blade holder, pocket scraper blade holder, and 2 scraper blades of each size. EnduroSharp® Torlon® Scraper Blade (TSB) inserts come in 5 different sizes, TSB-170, TSB-230, TSB-500, TSB-750, and TSB-1200. The blades slide and lock into the detent pin of the standard scraper blade holder handle, to easily alternate between the sizes as needed. This kit also contains the pocket scraper blade holder for use of the scraper blades in smaller areas.

The EnduroSharp® Scraper Blade & Holder kit is just one of the kits offered in the EnduroSharp® Product line. Contact Rich Reed for our Vice President of Sales and Marketing, at (513) 321-8404 or [email protected], more information on our EnduroSharp® kits and products.

 

 

When you need parts that can withstand extreme operating conditions, fluoropolymers may fit the bill. Parts like roofing membranes, fuel tubes, biomedical devices, and wires are all common applications of fluoropolymers.

FEP Fluoropolymer:

Fluorinated ethylene propylene (FEP resin) is a melt-processable fluoropolymer. FEP has low gas and permeability properties, can be extruded in long continuous lengths, and possesses excellent UV transmission rating. FEP is also suitable for use in a biomedical setting and is gamma sterilizable.

All of these attributes make FEP an ideal fluoropolymer for a diverse range of applications from environmental monitoring equipment to medical devices and electronics. Because it is a thermoplastic, FEP is also easily heat-formed, tipped, tapered, flared, and flanged.

PFA Fluoropolymer:

Perfluoroalkoxy (PFA resin) is a melt-processable fluoropolymer that combines many of the best traits of PTFE and FEP. At 500 °F (260 °C), PFA has a higher service temperature than FEP and maintains its mechanical integrity in extreme temperatures even when exposed to caustic chemicals. PFA has greater tensile strength than PTFE and a smoother surface finish than both PTFE and FEP.

PFA’s is a top choice in semiconductor, chemical, oil and gas, aerospace, automotive, pharmaceutical, and medical industries. This fluoropolymer has excellent lubricity, clarity, flexibility, and chemical resistance, making it a versatile choice.

FEP vs PFA Fluoropolymers

FEP and PFA are injection moldable, highly inert, compatible with most organic compounds, have good barrier properties and high continuous use temperatures. They are virtually impervious to chemical, enzyme and microbiological attack and stiffer than PTFE. The non-stick properties of these polymers can also be useful to reduce liquid, gel and powder adhesion. Fluoropolymers in general, have good dielectric properties and are resistant to atmospheric degradation.
While significantly less expensive than PFA, FEP is very difficult to mold due to its low viscosity. However, Performance Plastics has developed proprietary tooling and processes enabling the injection molding of small, thin-walled, complex FEP parts.

• More transparent than PTFE (not injection moldable)

• Better gas and vapor permeability properties than PTFE
• Maximum working temperature 400°F
• Approximately 1/3 the cost of PFA

PFA is significantly easier to mold than FEP, however, it is significantly more expensive.

• Higher continuous service temperature than FEP
• Maximum working temperature 500°F
• Difference in molecular structure gives PFA improved flow, creep resistance and thermal stability.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics. Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds. For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales and Marketing at 513.321.8404 or email at [email protected]

Ultem PEI Polyethermide thermoplastic component

Ultem PEI Polyetherimide thermoplastic component

Ultem Polyetherimide is a material widely used in the aerospace industry.  It is a material with high thermal resistance, high dielectric strength and excellent durability.  Since it has a high thermal resistance rating, components have the benefit of evading radar detection. It is often used in military aircraft components for weight reduction in place of metal parts.

High performance thermoplastic materials such as Ultem are in increasing demand in industrial manufacturing applications.  As a lightweight alternative to metal, it is increasingly being utilized in automotive, medical and semiconductor applications.

Ultem is now widely used in:

 

 

  • Medical instrument components
  • Medical devices
  • Manifolds
  • Electro-hydraulic control valves
  • Semiconductor components

Ultem has exceptional heat resistance, performing continuously to 340° F.  It is hydrolysis resistant, extremely resistant to acidic solutions, and can easily tolerate repeated sterilizations for reusable devices.  It is also used in semiconductor components because of its arc resistance, and is well suited for applications that require deposition, removal, patterning, and modification of electrical properties.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics. Ultem® is an amorphous material, which can cause complications during the injection molding process. A specific set of conditions, equipment, and processing procedures must be followed to effectively injection mold Ultem®. Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds.

Ultem® is one of the many high-performance polymers in which Performance Plastics specializes.  For more information on Performance Plastic’s capabilities, please contact Rich Reed, Vice President of Sales and Marketing at 513.321.8404 or email at [email protected]

Look in any aircraft maintainer’s toolbox and you’re sure to find a few items that aren’t offered in any aviation supply catalog. You’ll probably find a sharpened putty knife, scribe, or utility blade that the maintainer uses to remove gap materials, sealants and adhesives from aircraft substrates and fasteners.

While these items may offer a short-term solution, there are two basic problems with these items.  One, they simply don’t work very well and require a lot of muscle (and time) to use. The second is that the ones made of metal greatly increase the risk of damaging many aircraft substrates.

What aircraft mechanics need for these jobs are tools that are hard enough to hold an edge and that can be re-sharpened readily, but which won’t damage the underlying surface. That’s why Performance Plastics partnered with high-performance polymer supplier Solvay Specialty Polymers, the Air Force Research Laboratory, Materials and Manufacturing Directorate, Systems Support Division (AFRL/RXS) and the University of Dayton Research Institute (UDRI) to develop the EnduroSharp® line of aircraft maintenance tools.

EnduroSharp™ aircraft maintenance tools are expertly designed and molded from a high-performance polymer, Torlon® polyamide-imide (PAI) resin. These tools prevent the kind of damage to metallic and nonmetallic components or substrates that improvised metal tools can cause.

EnduroSharp tools are approved for use on USAF, USMC, USN and other foreign military aerospace systems. They are well suited for removing elastomeric coatings, boots, tapes, sealants, adhesives, gap fillers and tape residue from fiber-reinforced composite, plastic, glass, ceramic or metal substrates and fasteners. To remove material faster, the blades can also be used with heat- or chemical-assisted skiving processes, in which materials are carefully removed one thin layer at a time.

For more information and to see our EnduroSharp® tools in action, please visit the EnduroSharp section of our website or watch our demo EnduroSharp Demo on YouTube.

Thermoplastic medical spinal implant component, precision thermoplastic medical check valve, non-contaminating Thermoplastic medical valve component, precision thermoplasticmedical spinal implant component, non-contaminating medical spinal implant component

High Precision, PEEK, Thermoplastic Medical Spinal Implant Component

As technology continues to advance, medical device designers are being asked to increase performance and longevity of devices while decreasing costs. One of the most effective methods of achieving both goals is through a metal-to-plastic conversion using a medically compatible resin.

Newer polymers allow for the design of multiple features into one molded component and can replace metal components or multiple smaller parts. By improving the product design and manufacturing process with the latest materials and plastic manufacturing techniques, medical device designers can improve performance of the medical device while reducing its cost.

Medical devices continue to get smaller and more complicated. The size and complexity issues present opportunities for metal-to-plastic conversion. Small tools often are used by professionals who are gloved, and resins offer the ability to apply texture and reduce weight. By using a material that provides improved wet-grip characteristics and ergonomics, designers are able to improve the overall functionality of products. The use of properly selected thermoplastic elastomers (TPEs) allows for products that withstand sterilization to be made more effectively.

Instruments that must be repeatedly cleaned and sterilized, sometimes multiple times a day such as dental instruments, can now be made from high-performance materials such as polyether imide (PEI), or polyetheretherketone (PEEK) polymers. These improvements result in better medical devices often at lower manufacturing costs.

Medical resins are ideal for bone implants. Devices made from PEEK polymer are a better match to the normal flexibility of a bone for implants. When a stainless-steel implant is used, the adhesion between the implant and bone tends to loosen over time, because the bone has a small amount of flexibility. A stainless-steel implant does not flex.

By using PEEK polymer as the implant stem, rather than traditional stainless steel, the polymer has close to the same flexibility as the bone and there is a reduced tendency for the implant to loosen over time. This compatibility between bone and polymer makes a more effective medical device — one that will allow better long-term outcomes, especially as the average life span of an implant increases in tandem with the life expectancy of the general population.

 

 

https://www.plasticstoday.com/medical/plastics-edge-over-metal-medical-device-fabrication

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners. Introducing the Lil’ ABNIR Kit to the EnduroSharp® line of kits designed specifically for aircraft maintainers.

Adhesively bonded nutplates are increasingly being utilized in the manufacture of aerospace structures, with extensive use in securing removable maintenance access panels.

Precisely designed to work with adhesively bonded nutplates, EnduroSharp® tools are made from Torlon®, a high strength polymer, creating non-metallic tools that will not damage composite structures during use.

The EnduroSharp® Lil’ ABNIR Surface Prep Kit features a refined selection of commonly used tools with a lighter, easily transportable case. Designed as a two-layer kit, it is light and efficient tool kit for use in aircraft repair. The kit is designed for the maintainer on the go who needs to remove adhesives, sealants and coatings from aircraft structures.

The patented EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutter, bits, and discs for removal of substances on aircraft, windmill blades, boat/marine and automotive.

Performance Plastics is a custom precision injection molder of high performance, tight tolerance thermoplastic components. We specialize in geometrically complex precision parts that consist of chemically inert materials. Our expertise led to the development of our patented EnduroSharp® line of Aircraft Maintenance Tools.

For more information on the EnduroSharp®  Lil’ ABNIR Surface Prep Kit,  or any of our EnduroSharp® product line, please contact Rich Reed at [email protected] or visit our website at www.performanceplastics.com.

With the population aging and improving technology, medical device designers are being asked to increase performance and longevity of devices as well as decrease costs.  One of the most effective methods of achieving both these goals is a metal-to-plastic conversion.

Plastics can be used to replace even the most sophisticated medical device by incorporating simple design modifications.  High performance polymers offer the same strength and rigidity as some metals along with some additional advantages.

Advantages of the medical resins include:

  • Reduced Device Weight
  • Increased Design Freedom – Moldability of all Features
  • Improved Functional Aesthetics
  • Reduced Sterilization Burden
  • Improved MRI Compatibility

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics.  Ultem® PEI and Peek are premium medical grade resins that are ideal for the manufacturing of medical parts and components.  Medical grade resins provide excellent mechanical properties and are highly resistant to chemicals and thermal degradation, making them highly desirable materials for plastic injection molded products within the medical industry.

At Performance Plastics, we utilize a unique combination of extensive material knowledge, mold flow analysis, a design system and process expertise to eliminate or minimize the need for secondary operations. Our expertise in process control allows us to effectively injection mold medical resins into parts with extremely tight tolerances. This gives us the ability to provide an injection molded part made from the highest strength and stiffness of any medical resin.

PEI is one of the many high performance polymers Performance Plastics specializes.  For more information on Performance Plastic’s capabilities, please contact Rich Reed, our Vice President of Sales and Marketing at 513.321.8404 or email at [email protected].

Torlon Performance Plastic component

Torlon Performance Plastic component

Highly engineered plastic formulations can achieve higher strength to weight ratios than traditional lightweight alloys such as aluminum and titanium.

Torlon® polyamide-imide is the highest performance plastic that is still melt processible, making it ideal for complex geometries.  Torlon® possesses a 500°F heat distortion temperature and a 500°F continuous service temperature allowing for usage at elevated temperatures while maintaining superior strength. Its ability to resist distortion under high temperature makes it perfect for industrial applications.

Long term reliability under strenuous conditions makes Torlon® ideal for load bearing, sealing and isolation applications.  The material provides significant advantages over metals when corrosion is an issue.   Torlon® has demonstrated superior resistance to degradation when exposed to elements such as PH levels and radiation.

At Performance Plastics, we are experts in injection molding, specializing in high performance plastics.  Torlon® is a reactive polymer, which can cause complications during the injection molding process. A specific set of conditions, equipment, and processing procedures must be followed to effectively injection mold Torlon®. Our proprietary tool design software, processes and equipment enable us to injection mold components having complex geometries made from challenging ultra, high-performance thermoplastic materials, and reinforced compounds.

We utilize a unique combination of extensive material knowledge, mold flow analysis, a design system and process expertise to eliminate or minimize the need for secondary operations. Our expertise in process control allows us to effectively injection mold Torlon® in parts with extremely complex industrial applications. This gives us the ability to provide an injection molded part made from the highest strength and stiffness of any commercial thermoplastic.

Torlon® is one of the many high performance polymers Performance Plastics specializes.  For more information on Performance Plastic’s capabilities, please contact Rich Reed, our Vice President of Sales and Marketing at 513.321.8404 or email at [email protected]

 

 

EnduroSharp® has changed the way aerospace maintenance professionals remove sealants and adhesives from substrates and fasteners.

Adhesively bonded nutplates are increasingly being utilized in the manufacture of aerospace structures, with extensive use in securing removable maintenance access panels.

Precisely  designed to work with adhesively bonded nutplates, EnduroSharp® tools are made from Torlon®, a high strength polymer, creating non-metallic tools that will not damage composite structures during use.

The EnduroSharp® ABNIR Surface Prep Kit features a selection of commonly used tools with an improved design. Featuring a specifically designed multi-layer case, it is easy and efficient tool kit for use in aircraft repair. The tools are ideal to remove adhesives, sealants and coatings from aircraft structures.

The patented EnduroSharp® lineup consists of a variety of scraper blades, gap blades, reamers, cutter, bits, and discs for removal of substances on aircraft, windmill blades, boat/marine and automotive.

Performance Plastics is a custom precision injection molder of high performance, tight tolerance thermoplastic components. We specialize in geometrically complex precision parts that consist of chemically inert materials. Our expertise led to the development of our patented EnduroSharp® line of Aircraft Maintenance Tools.

For more information on the EnduroSharp®  ABNIR Surface Prep Kit,  or any of our EnduroSharp® product line, please contact Rich Reed at [email protected] or visit our website at www.performanceplastics.com.

The Lithium Ion Battery industry has begun using more and more plastic parts in their manufacturing processes. Most batteries intended for light vehicle usage now have 50% more plastic materials than they did even 10 years ago.  Some batteries have entirely plastic formulations ranging from the electrolyte (polymeric electrolytes) to the casing.  This is due to the very low weight of plastics as compared to metals. Plastic incorporation in batteries increases the electrolyte efficiency if used in polymeric electrolytes.

Commercially available lithium-ion batteries also use plastics. Plastic components incorporated in batteries include separators, gaskets, and casing components. Plastics have good shock absorbing characteristics and prevent damage to the basic cell unit from minor accidental shocks. Also, plastics such as Teflon® PFA, Ultem® PEI, and PPSU have high temperature resistance, corrosion resistance, and are electrical insulators so they are excellent at preventing short-circuit and “rapid disassembly.”

There has been a major shift from metal to resins in gasket manufacturing. Gaskets can be made from Ultem®, Ryton PPS and Fluoropolymers (PFA plastic) because of high heat resistance, chemical resistance, and ability to mold thin walls (.012”). Plastic parts may also lower the cost of production of batteries and may eventually replace most metallic components of batteries.

Performance Plastics is highly skilled at designing and molding high performance materials such as FEP/PFA, Ultem®, Torlon®, PEEK, POM, and PPS.  We work with our customers to solve technically challenging problems.   We can propose materials to implement part functionality in the design stage of development. We offer manufacturing solutions such as a clean room, the ability to offer direct gating of fluoropolymers, high volume production, visual inspection and automated facilities.

For more information and solutions, please contact Rich Reed, Vice President of Sales & Marketing at 513-321-8404 or email [email protected]